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Sammanfattning 
Trådlösa sensornätverk är en potentiell framtida jättemarknad. Ericsson förutspådde 
tidigare att 50 miljarder enheter kommer vara uppkopplade mot Internet år 2020. En stor 
andel av dem kommer att bestå av trådlösa sensornätverk. Innan det kan bli verklighet 
finns det en del problem att lösa för att enheter ska kunna klara åratal av kontinuerlig 
drift utan att behöva byta kraftkälla. Dessa enheter är typiskt sett små, billiga och har 
begränsade prestanda i bandbredd, minne och CPU. Kommunikation kommer 
huvudsakligen ske trådlöst, och radiodelen är typiskt den mest kraftslukande 
komponenten. Att reducera radioanvändandet är därför det viktigaste sättet att öka 
livslängden. 
 
I denna rapport identifierar jag fyra problem med det vanliga broadcast primitivet. Jag 
implementerar ett nytt kommunikationsprimitiv kallat Politecast. Politecast utvärderas i 
tre fallstudier: en enkel applikation kallad Steal the Light, en simulering av en Neighbor 
Discovery-applikation samt en två månaders installation i en konsthall: Lega-systemet. I 
dessa visades politecast kunna ge längre livstid, mindre mängd radiotrafik samt högre 
prestanda i applikationerna. 
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Abstract 
Wireless sensor networks have the potential for becoming a huge market. Ericsson 
predicts 50 billion devices interconnected to the Internet by the year 2020. Before that, 
the devices must be made to be able to withstand years of usage without having to 
change power source as that would be too costly. These devices are typically small, 
inexpensive and severally resource constrained. Communication is mainly wireless, and 
the wireless transceiver on the node is typically the most power hungry component. 
Therefore, reducing the usage of radio is key to long lifetime. 
 
In this thesis I identify four problems with the conventional broadcast primitive. Based 
on those problems, I implement a new communication primitive. This primitive is called 
Politecast. I evaluate politecast in three case studies: the Steal the Light toy example, a 
Neighbor Discovery simulation and a full two-month deployment of the Lega system in 
the art gallery Liljevalchs. With the evaluations, Politecast is shown to be able to 
massively reduce the amount of traffic being transmitted and thus reducing congestion 
in the wireless medium and increasing application performance. It also prolongs node 
lifetime by reducing unnecessary waking up of neighbors from overhearing. 
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Chapter 1

Introduction

Wireless sensor networks have the potential to become a huge market and fulfill-
ing the old dream of ubiquituous computing but before that can happen, there
are some problems to solve. The power available to a node is assumed to be
small so the node must be power efficient. The radio is often the most power
consuming device on a node, and as such it is common to switch it off as much
as possible – a tradeoff between power and performance. A common problem is
one-to-many communications, which has inherent problems associated with it.
In this thesis, four such problems are identified and politecast is presented and
evaluated as a way of dealing with those problems.

1.1 Wireless Sensor Networks

Wireless sensor networks (WSN) consist of many nodes with wireless communi-
cation and sensors for e.g. temperature, humidity, movement, light or magnetic
fields. Applications range from industrial monitoring and control, habitat and
nature monitoring and security applications to consumer products such as health
monitoring or games and lifestyle devices in PANs (Personal Area Networks).
The technology of WSNs is predicted to be a huge market. Oil company BP has
with WSNs costs 1/20 that of conventional sensors [15], HP predicts billions of
sensor nodes on buildings, along roads etc [13]. Ericsson ups this number to 50
billion devices connected to the Internet by the year 2020 ??, many of which
are going to be WSNs. In this envisioned world with ever increasing number of
objects with computing capabilities all around us, wireless communication and
long lifetime is key. Wirebound communication is cumbersome and expensive,
reaching costs of on the order of 10–1000 USD/foot [17].

1.2 Problem Formulation

With many devices, perhaps in remote locations, long life span and the ability
to communicate are crucial. In low power wireless sensor networks it is often

1



Figure 1.1: Politecast principle — transmit without waking up nodes so that
only awake and interested nodes (white) are bothered. Grey nodes are disinter-
ested and sleeping.

desirable or unavoidable to communicate one to many, but this is problematic
as it consumes a lot of power. It is not feasible to recharge or change batteries
too often. If equipped with energy harvesting technology, the power available
will be small, on the order of ca 0.1–0.2 W when equipped with solar panels the
approximate size of a mote. Therefore, minimizing power consumption is crucial.
Overheard transmissions are power wastes when a receiver is disinterested in the
information. How can the design space for the application designer be extended
with a better mechanism for sending from one to many, where disinterested
nodes are affected as little as possible?

1.3 Hypothesis

The basic principle behind efficient communication is that the receiver is inter-
ested in the data being communicated. The present broadcast primitive assumes
that all nodes within range are interested and should receive all one-to-many
transmissions. A better approach in some applications or networks could be the
opposite — assuming instead that most nodes are disinterested and those that
are interested make sure they listen for the transmission.

By shifting the bulk part of the effort to the receiver, the sender can save
more energy. This could be especially well suited in situations where many nodes
transmit data but few actually are interested, such as radio beacons and periodic
neighbor discovery announcements. As no time or transmissions are spent on
waking up, latency and congestion can be lower. The power consumption might
be higher for the receivers if they listen often or for long durations, but it gives
the application designer an added flexibility as interest (i.e. listening) could be
triggered e.g. by movement.

1.4 Method

This thesis has been conducted in an explorative and experimental way. The
qualitative properties of the primitive was constantly under scrutiny as I devel-
oped the API and implementation. The quantitative properties were evaluated
in simulations and experiments by using it in applications and comparing it with
the performance of the same applications but using broadcast. The necessary

2



software components needed were built as the need occurred. Examples include
device drivers for external hardware, a position data generator and software for
parsing message logs and calculating statistics.

1.5 Thesis Structure

This section briefly described the context and the thesis. Section 2 gives insight
to the background and the problem domain. Sections 3 and 4 start with iden-
tifying four problems with broadcast, then present the properties of politecast
and how it was implemented in Contiki. Then, the three case studies used for
evaluation and the evaluation itself are described in Section 5. Section 6 elabo-
rates on related work. The thesis follows with a discussion of the results together
with possible areas of future work and a conclusion in Section 7. Appendices are
API references (App. A), code examples (App. B), description of the developing
environment (App. C), glossary (App. D) and references (App. D).

3



Chapter 2

Background

Wireless sensor networks have been around for decades but is still awaiting wide
industrial adoption. There have been deployments for academic purposes, such
as a system for sharing feelings among coworkers, a volcano monitoring system
and a road tunnel monitoring system.

2.1 Wireless Sensor Networks

Today, wireless sensor network technology is pacing up to become the antici-
pated ubiquitous computing reality. It has a long history, going back to the
early days of computing and integrated electronics. One of the first wireless
sensor networks was deployed from the air over Vietnam during the war in the
1970’s – the ADSID, or Air Delivered Seismic Intrusion Detector. American
troops wanted to be able to track enemy troop movements on key roads in the
jungle and dropped sensor nodes that resembled darts into the ground. They
had seismic sensors, large batteries and a radio transmitting to airplanes circling
above. They weighed circa 20 kg each, measuring circa 1,2 meters tall and could
last for a few weeks. Present technology makes use of inexpensive commercial
off the shelf (COTS) products, are small and power efficient and come with a
variety of sensing abilities. It is an emerging market with huge potential. They
can today be seen mostly in academic and industrial applications. Figure 2.1
shows a future low-rate wireless personal area network formed by the devices
and clothes worn on a person.

2.1.1 Examples

Several deployments have shown the strengths and weaknesses together with
challenges of WSNs.

FriendSense FriendSense [51] was a system for exploring how co-workers
in an office space could express feelings and wishes with other co-workers. Every

4



Figure 2.1: An LR-WPAN where the mobile phone connects wirelessly with
health monitoring devices in the clothes, providing up to date status, and with
wireless headphones for streaming speech and music. Sensors for distance and
location tracking are present for safety and statistics. Every device is expected
to work seamlessly and without nuisances as a supple system.

participant received a personal node that used accelerometer, temperature and
humidity sensors to shape an avatar on a large public screen. One node acted
as data sink and relayed data to the server application running the screen.

ZebraNet ZebraNet [36] was meant to be an aid for wildlife scientists
doing research on the movement patterns of zebras. Every zebra in the pack
under study had a node with a GPS-receiver, solar power panel and sensor
node around its neck, which opportunistically sent the gathered data towards
the data sink.

Great Duck Island The deployment at Great Duck Island [53] was con-
ducted to provide wildlife scientists with habitat data (temperature etc). It
consisted of circa 150 small nodes buried in the nests of wild birds on the island
for four months together with a number of weather sensor nodes placed on the
surface. In all, the deployment was a great learning experience for the wireless
sensor network community as it showed the many difficulties and differences
with real life deployments in contrast to testing in labs.

Volcano monitoring On the potentially more dangerous side, a volcano
monitoring sensor network [57] was deployed in Ecuador for 19 days. Because of
the cost and size of regular volcano monitoring equipment, a usual volcano mon-
itoring deployment only have a couple of sensor sets, rendering course grained
observation data. With sensor nodes, the scientists got data from 16 nodes scat-
tered over the surface. This deployment showed how important it is with ground
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Microcontroller Texas Instruments MSP430F1611 [5]
Radio transceiver Chipcon CC2420 [4]
External flash memory ST M25P80 [3] 1 MByte
Antenna Antenova Impexa 2.4 GHz [1]
Accelerometer Freescale MMA7260 3-axis multiple sensitivity [2]
LED 8 red SMD LEDs

Table 2.1: The hardware components in Sentilla JCreate nodes.

truth and calibration of sensors as the data collected was of subpar quality to
the volcano scientists.

Related work and more examples are described in Section 6.

2.1.2 Examples of Hardware

Most of the motes on the market consists of a power source, a microcontroller,
a radio transceiver, an antenna, a flash memory for data storage and sensors
according to the application at hand. Common properties are that they are
small, resource constrained and inexpensive (on the order of 50-100 USD).

Sentilla Jcreate Nodes JCreate nodes from Sentilla [11] have a microcon-
troller and a radio transceiver from Texas Instruments. The microcontroller is
a 16-bit microcontroller with 10 kB RAM, 48 kB flash, 12-bit ADC, hardware
multiplier and DMA. The radio works in the free ISM-band at 2.4 GHz and
is compatible with IEEE 802.15.4. The power supply is two AAA-sized 1.5 V
batteries in a battery holder on the back of the node. Eight LEDs, a flash mem-
ory and a low-g, three-axis accelerometer are also included in the node. It has
a chip antenna from Antenova. Nodes are programmed using a programming
fixture which connects via USB to a computer.

Tmote Sky Nodes Tmote Sky nodes use the same radio, flash memory and
microcontroller as JCreate. They have onboard USB circuitry and different
sensors, such as humidity and infrared light. For power source they use two
AA-batteries.

2.1.3 Characteristics

A WSN consists of many nodes (tens to thousands), small devices also called
motes, that are severely resource constrained in comparison to e.g. industrial
embedded systems for motor control. There is often a coordinator or master
node with less constraints; for instance it can be connected to the Internet and
have constant power supply. That master can act as a data sink.
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Power Consumption Contrary to what one could expect, many of the com-
mon radio transceivers found in 802.15.4-compliant nodes actually need equal
or more power listening than transmitting [30]. This is because of that the
radio transceiver needs to have amplifier, filter and logic active, and most
802.15.4-devices has a low maximum transmission power (on the order of 1 mW).
E.g. the CC2420 radio transceiver consumes circa 57 mW when listening, but
only 51 mW when transmitting at full power. This means that the radio tran-
sceiver uses about PCC2420−PTx

PTx
= 51−1

1 = 50 times more power on logic etc. than
on actual transmitted signal power. For comparison, the accelerometer [2] and
microcontroller [5] in the Sentilla JCreate consumes circa 1.5 mW and 3 mW
respectively when active.

Communication Communication in low power wireless networks is counter-
intuitive in terms of connectivity, consistency over short time and probability
of reception. Figure 2.2 is a graph of the momentary probability of a successful
transmission. It was compiled by the authors of [33] by having a grid of nodes on
an open field (15 ∗ 15 m2) sending over 50000 packets from a node in the center
while the surrounding nodes kept track of how many were received. Wireless
transmissions are not static, uniform discs of radiation. They are often asym-
metric [33], i.e. node A hears node B but B cannot hear A. In [33], the number
of observed asymmetric links were between 5 – 15 % of the whole depending on
distance and transmission power. To make things worse, this constantly changes
over time and show burstiness [49]. Burstiness is that packet losses are not inde-
pendent from each other, but correlated with the number of failed or succeeded
immediately previous transmissions. The reason for this is unclear, but a hy-
pothesis in [49] is interference from 802.11b wireless networks that operate in
the same frequency band and has on the order of 100 times larger transmission
power. Other sources of these behaviors are interference from microwave ovens
and switching power supplies, multipath reflections, congestion, antennas not
being omnidirectional etc.

The hidden terminal problem can cause serious performance degradation in
dense networks. Before a transmission, the node must check the radio media for
traffic by sampling the channel for energy – clear channel assessment (CCA). If
the energy is below a threshold it starts transmitting. If two nodes who are out
of range of each other want to send to the same receiver (as seen in Figure 2.3),
one can sample the radio and not sense the ongoing transmission, thus starting
its own transmission and causing interference at the receiver.

Also, multi-path phenomenas are common. Radio waves are reflected on
surfaces and arrives at the receiver multiple times with slight time skew. Other
problems include overhearing of uninteresting transmissions and congestion in
the radio medium when there is a lot of traffic.

2.1.4 Challenges

Probably the most important challenges with wireless sensor networks – consid-
ering the predicted future of many billions of devices – are lifetime, scalability
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Figure 2.2: The graph (after empirical measurements in [33]) illustrates the
momentary probability of a successful transmission if a receiver was placed in the
vicinity of the node on the 15 ∗ 15 m2 field. Darker means a lower probability.
This shows the non-uniform and asymmetric nature of wireless communications.
Notice the islands of worse or better probability, in part explaining asymmetric
links.

Figure 2.3: The hidden terminal problem: two nodes that want to transmit data
to the same node at the same time samples the radio medium for energy (CCA).
As they are out of range of each other, they detect none and start transmitting,
resulting in interference at the intended receiver.

and mobility. Other challenges are security, reliability, predictability and net-
work topology issues such as routing.

Lifetime A critical factor for WSNs is lifetime. The sheer numbers of nodes
and the sometimes remote location of where the network is deployed [36] [53]
[54] [57] makes it difficult if not infeasible to access the nodes physically. Energy
harvesting, such as solar, kinetic or wind power, is a hot research topic. How-
ever, because of their low efficiency (commercially available solar panels have
at best 20 % efficiency [16]) and increasing demands on applications, low power
consumption will still be necessary. Also, depending on the application, a node
can spend far more time listening for transmissions rather than transmitting or
receiving. And, as listening cost more than transmitting, just sending less is
not enough.
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Scalability WSNs are predicted to include huge numbers of nodes and with
increasing density comes an increasing amount of traffic a node can hear. Many
of the current state-of-the-art power saving MAC protocols are designed for
WSNs with a relatively low number of nodes. If several nodes transmit at the
same time, congestion and collisions will occur, leading to corrupt and dropped
packets and makes it hard to get a message through. If the network use a
synchronous MAC protocol, it can run out of timeslots. Memory can be an
issue if nodes need to keep neighbor tables and they are too many.

Mobility As WSNs become more common, and especially in LR-WPANs,
they are expected to also be more mobile. Motion is unpredictable, especially
when people or animals are involved. Devices moving independently also implies
a dynamic structure of the network itself, as devices move in and out of range of
other devices. This again points to the problem with lifetime as a more dynamic
network implies more traffic.

For a network to be able to form, so devices are able to share information,
they must discover each other. This process is called neighbor discovery and
should be a fundamental and constantly ongoing process for every device [29].
However, this is costly as a node must periodically advertise its own presence
and listen to others. Neighbor discovery should be accurate (i.e. not missing
neighbors), power efficient and have low latency. For a mobile WSN, it should
be asynchronous.

2.2 The OSI Reference Model

The OSI reference model is an abstraction for layered communication and pro-
tocol design, divided into seven layers. The layers can pad the data with extra
information, like CRC-checksums, address fields and flags. When received, the
corresponding layer strips the packet of this information, processes it (e.g. by
checking CRC) and pass on to higher layers. Figure 2.4 illustrates this as a
packet is sent down the protocol stack, over the physical layer to the receiver
and up through the layers.

For this thesis, only the bottom layers are important. IEEE 802.15.4 only
specifies the PHY- and MAC layers, and the politecast communication primitive
is logically located in the data link layer.

NETWORK-layer The network layer uses logical addresses to direct
communication to nodes. In IP, the addresses are 32 bits (IPv4) or 128 bits
long (IPv6). In Rime, the addresses are 16 bits.

DATA LINK-layer The data link layer provides means to communicate
with other devices by physical addresses (the MAC address). It can be divided
into two sublayers: media access control (MAC) and logical link control (LLC).
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Figure 2.4: The seven layer OSI model. The data generated in the applica-
tion at the sender (left stack) is padded with information (e.g. CRC-checksum,
addresses, application version) at some layers so that they can accomplish their
respective tasks at the corresponding layer at the receiver (right stack), such as
error handling, managing communication flow etc.

MAC controls how and when the LLC-layer can access the media for transmit-
ting and receiving and LLC wraps the packet with information for e.g. error
correction.

PHY-layer The bottom layer specifies the electrical and physical prop-
erties: the voltage levels, modulation scheme, power, frequency, mechanical
connectors etc.

2.2.1 Power Saving MAC Protocols

For nodes such as Sentilla JCreate and Tmote Sky, the radio transceiver con-
sumes approximately ten times more power than the rest of the sensor node
together (if no LEDs are on). For example, the energy used for transmitting
1 byte of information with the CC2420 roughly equals 2200 clock cycles with the
microcontroller at 4 MHz. This is common for sensor nodes as other components
often are power efficient in comparison to the radio. The MAC layer protocol
is handling switching on or off the radio to save energy. MAC protocols can in
large be divided into three subsets: asynchronous, synchronous and hybrids.

Asynchronous MAC Protocols Asynchronous MAC protocols are not syn-
chronized in time and as such must incorporate a mechanism for either making
sure the receiver is listening, or wait for it to tell that it is listening. They can
in large be divided into LPL and LPP schemes, where two well-known examples
are X-MAC and RI-MAC respectively.

X-MAC X-MAC [21] was presented in 2006. It is a low power listening
scheme (LPL) in which the nodes periodically wakes up and listens for traffic a
short time before going back to sleep.
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Figure 2.5: A sending an unicast packet with X-MAC to B. As soon as B hears
the strobes, it responds with an ACK, and A sends the data packet.
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Figure 2.6: Sending a broadcast packet with X-MAC. The strobe train duration
is slightly longer than the sleeping period.

In X-MAC, nodes periodically switch their radio on to listen a short while for
transmissions. A sender must make sure that it transmits during this slot, but
as it does not know when that slot occurs, it must repeatedly transmit wakeup
strobes until the receiver responds. For a broadcast, the wake up strobes must
be transmitted for more than the globally defined sleeping period T.

Four parameters set the timings of X-MAC, for example how many strobes
are transmitted for a transmission, see Figure 2.7.

ContikiMAC ContikiMAC is a MAC protocol that comes with Contiki.
It is similar to X-MAC but instead of a continuous listening in each wake up
period it instead does two CCA checks with a small delay between, during
which it sleeps. This makes for a lower radio utilization. Transmissions do not
use strobes as X-MAC but instead transmit the actual data packet repeatedly
(Figure 2.8). ContikiMAC timings are set by specifying a channel check rate,
such as 16 Hz.

Figure 2.7: The figure shows the four parameters that define the most basic
properties of X-MAC. As can be seen from the figure, the Strobe wait time must
be shorter than the On time. Also, the Strobe time must be longer than the sum
of On and Off times.
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Figure 2.8: With ContikiMAC, the sender (node A) repeatedly transmits the
data packet itself. Any node in range waking up will receive the packet and go
back to sleep.
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Figure 2.9: RI-MAC sending a broadcast packet. The sender is awake for longer
than a sleeping period and responds to hearing beacons from each waking node
by sending the data packet.

RI-MAC RI-MAC [50] was proposed in 2008 as a response to the scala-
bility and congestion problems with X-MAC and other LPL-protocols. It is a
low power probing scheme (LPP) in which the nodes wake up and probe the
others for data by sending a beacon, which nodes can respond to if they have
a packet pending for that receiver. When broadcasting, the sender lies awake
and awaits probes for an entire sleeping period (Figure 2.9).

Synchronous MAC protocols Synchronous MAC protocols divides time
into slots (TDMA, Time Division Multiple Access), which are assigned to the
nodes. If node A wants to transmit to node B, it must await the time slot when
it knows B is listening. For a broadcast, it must lie awake and transmit at every
slot.

WSNs are envisioned to be used in large numbers with inexpensive hardware.
Such hardware will use inexpensive oscillators (or even the internal oscillator
in the microcontroller) which are of lower quality and precision. This means
that the clock drift will be high. The oscillator drifts due to impurities in the
crystal, temperature, age etc and is expressed in ppm. Regular oscillators used
in sensor nodes often have between 20–100 ppm drift, which corresponds to a
drift of ±80–400 clock ticks per second for a Sentilla JCreate (at 4 MHz).

Because clocks need to be synchronized with high accuracy, and the os-
cillators in the nodes drift, synchronization messages need to be sent. For an
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accuracy of 1 ms with a 20 ppm oscillator, a resynchronization message is needed
every 50 seconds [37]. This synchronization overhead can easily be dominant,
depending on sleep periods and how often transmissions of useful data occurs. In
the Great Duck Island second deployment [53], nodes sampled the sensors every
20 minutes and transmitted this to the data sink node. This would mean, with
a 20 ppm oscillator, the number of synchronization messages would outnumber
the sensor messages with 24 to 1.

S-MAC S-MAC [61] uses synchronization messages to exchange schedules
with neighbors. It forms microclusters to set up a common sleeping schedule.
The sleep and awake periods are predetermined and constant. The main disad-
vantages with S-MAC are the overhead from the synchronization messages and
the periods being constant, which lowers the overall throughput.

Hybrid MAC protocols Hybrid MAC protocols incorporate functionality
of both asynchronous and synchronous protocols, or can switch between modes.

MH-MAC MH-MAC [20] can be in either of three states: fully on, asyn-
chronous or synchronous. It uses a RTS/CTS exchange sequence when in full or
synchronous mode. When in asynchronous mode, it is similar to X-MAC with
preambles.

WiseMAC WiseMAC [31] uses synchronous functionality for optimizing
asynchronous traffic. By keeping a table over the neighbors sleeping schedules,
it can dynamically adjust the preamble length to start just before it thinks
the neighbor will wake up. Broadcast is implemented by buffering the packet
and awaiting the anticipated wake up from its neighbors, then transmitting the
packet for each neighbor.

2.3 IEEE 802.15.4

The standard IEEE 802.15.4 [14] (hereafter just ”802.15.4”) was first specified
2003. The focus for the standard was wireless communication between devices
in a LR-WPAN. The devices are supposed to have low cost, low power, low
complexity, low data rates and long expected lifetime. The standard specifies
the two lowest layers in the OSI-model: the physical- (PHY) and the media
access control (MAC) layers.

Physical Layer

Devices operate in three open and unlicensed frequency bands: 868–868.8 MHz
(3 channels), 902–928 MHz (30 channels) and 2.400–2.4835 GHz (16 channels,
11 to 26) as can be seen in Figure 2.10. The modulation is DSSS/O-QPSK and
in the 2.4 GHz band the data rate is a modest 250 kbit/s (lower rates in the
other bands). The radio must have a receiving sensitivity of -85 dBm or better
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Figure 2.10: The 802.15.4 2.4 GHz radio band. Each of the 16 channels uses 2
MHz and is 5 MHz apart center to center.

(i.e. lower). For transmitting, a minimum maximum transmission power of
-3 dBm is required. This means that by specification, as 0 dBm equals 1 mW,
a transceiver should be able to sense at least 5 pW and transmit at least at
0.5 mW. Further, a maximum maximum transmitting power is not regulated.
Instead, the local regulations where the devices will be used must be followed.
Most often, it varies from 1 mW to 1 W depending on location, duty cycle and
modulation scheme.

Radio Metrics Two important metrics are link quality indicator (LQI) and
received signal strength indicator (RSSI). For every packet the radio transceiver
receives, it measures the bit error rate and calculates the LQI. The transceiver
can also directly measure the signal strength. RSSI is not a part of 802.15.4 but
commonly implemented in the radio ICs on the market anyway. It is measured
in dBm.

MAC Layer

802.15.4 does not specify the entire datalink layer, only the MAC layer. The
MAC features e.g. CSMA, beacon management, channel access, frame valida-
tion, frame format and acknowledgments. Beacons are synchronous and used
e.g. for network discovery services. The maximum packet (PDU) size including
all overhead is 128 bytes.

2.4 Related Specifications and Standards

2.4.1 Zigbee

Zigbee is a proprietary protocol specification that builds on 802.15.4. It forms
networks in either beacon or non-beacon mode. In non-beacon mode, the node
must keep the radio on constantly as it uses an unslotted CSMA-CA access.
In beacon mode, the node periodically adverts its presence with synchronous
beacons. The duty cycle is chosen depending on data rate, but for 250 kbit/s the
valid range is 15 ms to 252 s. It has received critique against a too centralized
network structure where a network coordinator node can run out memory or not
be able to give a child device a network address if it has many neighbors [47].
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2.4.2 Bluetooth

Bluetooth is specified in IEEE 802.15.1. It was designed not for being ultra
power conserving but for multimedia appliances and thus have a different ap-
plication domain than 802.15.4 devices. It uses the same frequency band at
2.4 GHz (but with a different modulation scheme: frequency hopping spread
spectrum, FHSS) and has data rates up to 1 Mbit/s (v1.2) or 3 Mbit/s (v2.0).
It forms piconets with one master and up to seven slaves and the nodes must
remain active in order to be polled whenever the master does that. There has
recently been movements towards a broadened, specification of low power Blue-
tooth with similar key benefits as IEEE 802.15.4.

2.4.3 IEEE 802.11, WiFi

IEEE 802.11 consists of several standards, but those most people know of are
b, g and n. They are found in products like desktop and laptop computers,
handheld devices etc. The demands on transmission range and data rates are
much higher than that of 802.15.4. They use different frequency bands, where b,
g, and n are centered around 2.4 GHz and has 14 channels of 22 MHz each. As
it uses the same frequencies as 802.15.4, there is a potential risk of interference.
The IEEE 802.15 TG4 concluded that in 802.11 and 802.15.4 coexistence there
is a risk of performance degradation, but in practice, low duty cycle applications
and CCA will help reduce the severity of the interference. The term ”WiFi” is
a trademark owned by the WiFi alliance for devices that are certified by the
WiFi alliance. The requirements for certification are very close to, if not the
same as, the IEEE 802.11 standards.

2.5 Network Primitives

A primitive is the simplest or lowest element available for achieving something
in programming. It is a term relative to level of discussion because of its gener-
ality. Network primitives are used as abstractions of communication, reducing
complexity for the application designer by hiding the underlying communication
and functionality under the hood. Each primitive represents a way to address
and transmit data.

Unicast An unicast is an transmission from one node to a single destination
node, identified with an address.

Broadcast A broadcast is sent from one node to every node in range. It is
commonly used for tasks like neighbor discovery, data dissemination and route
discovery. Broadcast stands out as the only primitive usable when the receiver
addresses are unknown.

15



Figure 2.11: Unicast (left) and broadcast (right) principle.

Multicast Multicast is when a node sends to a subset of all nodes in range,
commonly implemented as a series of multicasts or with group addresses.

Reliable Unicast Reliable unicast uses acknowledgment packets (ACK) after
a successful transmission. If the sender does not receive the ACK within a time
period, it retransmits the packet until it either receives an ACK or it has tried
too many times.

Flooding Flooding can be used for route discovery (enabling multihop unicast
etc) and data dissemination. If node A wants to know the route to node E, it
broadcasts a packet with information of the route final destination. As nodes
receive the route request message, they resend it. When node E receives the
route discovery request, it sends back an ACK via unicast to the node that last
sent the route request. That way, the ACK finds its way back to A and A can
read the accumulated addresses of the nodes the packet passed by.

Multihop Unicast When a node wants to send to another node that is out of
range, it can send via intermediate nodes that relays the packet. This requires
the knowledge of a route to the end receiver. E.g. node A wants to send a
packet to node E but is out of range. It knows that it can send via nodes B, C
and D to E. The relay nodes read the packet headers and resends the packet so
it can travel further down the chain to the end receiver.

2.6 Contiki Operating System

The Contiki operating system [18] is a light weight operating system for resource
constrained networked devices. It is written almost entirely in the C program-
ming language. This makes it highly portable and easy to learn as it does not
require learning any special tools or programming language. The entire Contiki
is open source and available for free in a BSD-style license. A key property with
Contiki is to be lightweight in order to be used in platforms with extremely
scarce resources in terms of energy, computing power and memory. A typical
deployment with Tmote Sky-nodes using the Contiki OS and applications is on
the order of 2 kbyte RAM and 20 kbyte ROM. Contiki provides many features
such as dynamic loading of application modules, enabling over the air (OTA)
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reprogramming of nodes in deployment. A miniature TCP/IP-stack [24] enables
TCP/IP-communication.

Protothreads By using protothreads [25] the OS achieves multithreading be-
havior on top of an event-driven kernel. The big advantage with protothreads
compared with other ways of implementing multithreading is that the pro-
tothreads share the same stack, in contrast to having a complete stack for each
thread no matter how much of it is used. This results in a much lower RAM
footprint. It does on the other hand introduce minor complications, such as
local variables not being saved across a blocking wait (use static variables in-
stead) and that switch cases cannot be used inside a protothread. The overhead
is small, only two bytes per protothread.

Processes and Program Flow Processes are implemented as protothreads.
They can be polled (by the kernel) or called upon by other processes, with
events. When called upon, they run till completion or a blocking wait; they
cannot preempt each other. As processes are non-preemptive, care must be
taken so that a process will not cause CPU starvation, which results in a reboot
due to watchdog timeout.

Clocks and Events Two hardware timers in the microcontroller are used to
provide Contiki with a coarse- and a fine-grained clock. Macros provide an easy
way of using time in applications. The kernel has an event scheduler that dis-
patches events to running processes. Events can be asynchronous, synchronous
or polling. The two first differ in when the event receiver process is scheduled
and polling is done periodically by the kernel, or from within the processes
themselves (typically hardware close processes, like device drivers) [18].

Power Saving and Energy Estimation Microcontrollers generally offer low
power modes (LPM) where internal components (like ADCs) are shut down to
save energy. The Contiki event scheduler runs and polls the scheduled processes
so that it can put the microcontroller in LPM until the hardware timer inter-
rupt (or another interrupt) strikes. This way, the microcontroller is in LPM
as soon as no process is currently using the CPU. As lifetime is important, it
follows that knowing about power consumption is important. Added hardware
(such as SPOT [35]) increases size, cost, power consumption and complexity.
Energest [27] is a Contiki module for estimating the energy used by a periph-
eral. Energest uses the fine-grained software timer for measuring the time spent
between macro calls. A driver for a peripheral can call an energest macro on
entry and just before exit and the energest module periodically sums the time.

Communication Architecture

The communication architecture in Contiki uses a single buffer for both incom-
ing and outgoing packets: the packet buffer. The complete communication stack

17



Figure 2.12: The layered structure of the Rime communication primitives; both
politecast and unicast builds on the broadcast primitive, adding meta data fields.
The politecast connection is used for the positioning service, and when a trace is
transmitted from the Lega to the infrastructure, unicast is used.

consists of a high level protocol or application, the Rime collection of commu-
nication primitives and the packet buffer, the Chameleon layer [26] with header
transformation modules, the MAC layer protocol and finally the device drivers.

A high level protocol writes data into the packet buffer and calls one of the
Rime communication primitives, e.g. reliable unicast. This sets the correspond-
ing attributes (meta data fields), and calls Chameleon. Chameleon uses the
appropriate module to create headers (for e.g. 802.15.4 or IP) according to the
attributes. This forms the packet data unit (PDU), which is forwarded to the
MAC protocol, which uses the device drivers to transmit it. With Chameleon,
the high level protocols and Rime primitives do not need to be changed e.g.
when moving from 802.15.4 to Ethernet.

Rime The communication primitives in Rime form a layered structure, where
the more complicated primitives builds on one or more of the more basic prim-
itives. The most simple primitive is anonymous broadcast (”abc”). The broad-
cast primitive adds sender address and pass the packet to abc. The unicast
primitive adds the receiver address attribute to broadcast. This way, primitives
build on lower ones and add functionality. A primitive can also use several
others, such as the trickle primitive which uses both broadcast and unicast for
data dissemination. An example of the Rime stack in use is seen in Figure 2.12.

Rime uses Rime channels represented by an 16-bit integer and must be the
same in both sender and receiver. It can be thought of as an identifier for
Rime so that it knows how to decode the packet header to the corresponding
primitive. A connection is opened, specifying parameters such as the channel
and pointers to callbacks. Callbacks are invoked by the primitive, e.g. when
receiving a packet.
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uIP The uIP (micro-IP) protocol stack [23] offers TCP/IP-support on very
small embedded devices. It comes with support for header compression and is
certified for IPv6. The layered structure of the communication stacks in Contiki
allows for IP packets to be transmitted over Rime and vice versa.

Examples of Primitives in Rime

Anonymous Broadcast Abc is the most simple primitive. It contains
neither sender or receiver address.

Broadcast A broadcast adds the sender address packet buffer attribute
on top of a abc transmission.

Unicast An unicast is a broadcast with a receiver address attribute.

Flooding Flooding uses broadcasts with the polite gossip mechanism [42]
to spread a message across a network. A node initiates the flooding with a mes-
sage and a unique sequence number generated by the primitive. The primitive
checks if this is the first time it receives a packet with this sequence number,
and if so retransmits it, otherwise suppressing it.

Route Discovery The route discovery primitive is used for finding a mul-
tihop route from one node to another. The requester floods the network with a
request for a route to the target, for each hop adding the addresses of the nodes
the request has passed by, and the target answers with an unicast following the
chain of addresses back to the requester. It opens two channels: one flooding
for the route request, and one unicast for the route ACKs from the target back
to the requester..

COOJA Network Simulator

COOJA [46] is a simulator developed at SICS for simulating wireless sensor
nodes. It can simulate Contiki code on various platforms and uses MSPSim for
simulating nodes with the MSP430 family microcontrollers.

Other Operating Systems for Small Embedded Systems

There are a number of OS’ developed by academia and industry. TinyOS and
FreeRTOS are free and open source.

TinyOS TinyOS [41] is a free and open source operating system targeted at
wireless embedded sensor networks with a first public release in 2000. It is
written in an extension to C called nesC. TinyOS is used in academic research
and industrial applications. The kernel is event-driven and being completely
non-blocking (except for Tasks), it uses callbacks for every operation that lasts
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longer time than some hundred microseconds. It has been ported to about a
dozen platforms.

FreeRTOS FreeRTOS [55] is a real time OS released under a GPL-licence
with the option of having closed proprietary source code. It is coded mostly
in C, with some architecture specific parts in assembler. Designed to be easy
and small, it is ported to many platforms such as Atmel AVR, ARM7, ARM9,
MSP430, some PICs, x86, 8052 and more. It is also kept in a version with
identical code base called OpenRTOS, the only difference being the licensing.
It supports preemptive, prioritized multithreading; TCP/IP support can be
added with uIP from Contiki.
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Chapter 3

Politecast

Politecast is a new communication primitive that assumes that nodes that are
interested are listening. By transmitting only to nodes that are interested, it
offers less congestion, less overhearing, lower latency and a shift of the transmis-
sion burden. It is an addition to the design space for the application designer.
The name is chosen to reflect on the nature as non-obtrusive and non-intrusive.

3.1 Four Problems with Broadcast

In this work I identified four problems with broadcast. They are: overhearing
costs, increased congestion, biased effort and high latency.

Overhearing Costs Overhearing occurs when nodes overhear transmissions
not explicitly addressed to itself. This is a pointlessly increased cost if the node
is not interested in the contents of the transmission. Thus it is hindered from
preserving energy by sleeping.

As the radio transceiver is the component with the highest power consump-
tion it is common to shut it off as much as possible. In a neighbor agnostic
network, i.e. one that uses broadcast frequently, the amount of overheard trans-
missions can have a large impact on power consumption. In parts of the Great
Duck Island deployment [53] more than 25 % of the radio power consumption
was attributed to overhearing. Ideally, a node that is disinterested should not
be bothered at all.

Increased Congestion As wireless networks share the medium, congestion
can cripple networks performance. As network size scales up, the more traffic
there is and the more likely congestion and interference is to happen. Broadcast
transmits repeatedly (strobes or the data packet), thereby causing much more
traffic than the actual useful data packet. Collisions makes it harder to get a
message through as packets are corrupted or dropped. Congestion can be low-
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Figure 3.1: Politecast assumes that if a node is interested, it will be listening
for the transmission. Hence, no waking up strobe transmissions or waiting for
node probing are performed.

ered by reducing transmission periodicity, but then also application performance
is reduced.

Biased Effort Broadcasting in LPL and LPP is a biased, or unbalanced,
effort where the sender has a higher power cost for the transmission than the
receiver. In LPL, the sender will always need to transmit for the entire sleeping
period, but receivers will on average only be awake for half that period. LPP
is even more unjust: the sender is awake an entire period but receivers will
receive the broadcast packet directly after they have probed the medium, and
can then go back to sleep. From a global network perspective, this is good
if few nodes are expected to broadcast as the highest power consumption for
broadcast transmissions occurs in few nodes (the senders). However, if the
majority of nodes transmit broadcasts, or if the node that needs to broadcast
also has the largest need to save energy, it can be better if the burden is shifted
to the receivers instead.

High Latency In applications like alarm systems, networks with a high need
of synchronization or interaction rich systems, high latency reduces application
performance. From a transmission wide perspective, broadcast is slow as it is
limited by the sleeping schedules in receivers.

3.2 Politecast

Politecast assumes interested nodes are listening (Figure 3.1). The data packet
is sent just once, without wake up strobes. Other nodes are not awakened. The
policy for when and for how long a node listens for politecast transmissions is
controlled by the application, not the primitive. This is necessary as applications
are so qualitatively different that one policy cannot be optimal for all cases. E.g.
one application may have a sensor based trigger and then listens until a specific
transmission is heard, while another has a periodic trigger and listens for all
transmissions during a fixed amount of time.
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Even though it is possible to improve broadcast in a number of ways, most
of the previously stated problems remain. By numbering the strobes, a woken
node can go back to sleep until the data transmission, thus lowering the power
consumption with the receiver but not the sender. By tagging messages with a
class identifier — e.g. sensor data, commands, parameters, neighbor discovery
— this tag could be included in the strobe, lessening the overhearing when
disinterested problem but not others. A node waking up could read out from
the strobe that there is a soon to come sensor data message, and if it is not
interested, it can go back to sleep. Instead of transmitting strobes, the sender
can repeatedly transmit the actual message. A node waking up can receive the
packet and go to sleep until the sender is done transmitting, but the bulk part
of the effort still lies with the sender.

Politecast takes a different approach: instead of pushing the message to
the receivers, it transmits the data packet immediately without any attempt to
wake up nodes. It assumes that any interested receivers are awake and listening.
No waiting is performed and no repeated transmissions. As the transmission is
immediate, the latency is as low as possible to achieve. A receiver must explicitly
turn the radio on to listen. Therefore, nodes will only receive politecasts if
they are listening, either by politecast or by the underlying power saving MAC
protocol. It scales well even with dense networks because of the small amount
of traffic. As the sender does not make any effort in waking up or waiting for
nodes, the effort is as small as possible for the sender.

3.2.1 Example

When in a network with mobile nodes, it is often desirable to know who your
neighbors are. This can be used for sharing resources (e.g. node B sends tem-
perature data to node A) or finding routes to a distant node with multihop
transmissions. Neighbor discovery is a costly service as every node must an-
nounce itself to the others by sending periodic ”Hello”-messages. It becomes
a tradeoff between lifetime and performance. By sending and listening more
often, the lifetime is shorter but the accuracy is higher and latency is lower,
as long as there is no or low congestion. Also, a node might not always be
interested in knowing the neighbors all the time, but only when it is moving. It
should therefore be able to adjust to this change of situation.

A future scenario: a person is wearing a number of devices with wireless
communication. Every node transmits beacons periodically with an identifier
and information about what services it can offer. When the person adds a new
device, e.g. mounts a heart pulse sensor, it upon bootup listens for new devices.
It finds the other devices and share heart rate data with them. When the person
start moving, one of the devices detects the movement with an accelerometer
and starts listening for new neighbors along the way.
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Chapter 4

Implementation

The politecast implementation covers two layers: the network layer and the
MAC layer. At the network layer, politecast needs timers and data structures
for the connection. At the MAC layer, politecast needs to be able to switch on
the radio for listening.

This politecast implementation in Contiki OS is very lightweight. It adds
little overhead in terms of computing and memory usage. The code size and
static RAM usage is low: 328 bytes ROM and 32 bytes RAM is needed for one
politecast connection and every extra politecast connection adds 32 more bytes
RAM.

4.1 Network Layer

Politecast builds on top of the broadcast primitive. When transmitting, polite-
cast adds a politecast packet buffer attribute to a broadcast packet and invokes
the broadcast transmit function. There is a connection-local transmission power
setting (TxP) so that politecast sets the transmission power before transmitting,
instead of requiring the user to do that for every transmission.

When a politecast packet is received, the underlying primitives will invoke
the registered receive callbacks which ends up in the callback registered in the
application when the connection was opened. When a politecast packet is re-
ceived, the packet is passed on through the Rime stack, each primitive stripping
the packet of its attributes respectively. Finally, the politecast receive callback
function is invoked, in which the packet can be read.

4.2 MAC layer

Politecast requests the MAC protocol to switch on the radio when listening.
Listening is either for a limited set of time, or for a non-specific duration. When
a time is specified, a timer is started that when expired tells the MAC protocol
that it is finished listening and sleeping can resume. If the listening is undefined,
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listening is started without the timer and listening would only be stopped by
a call to the listening-stop function. The radio must be kept on for the entire
listening period. When listening is turned off, the MAC protocol will control
radio duty cycling. Rime offers functionality to switch on or off the MAC layer
duty cycling. When transmitting and the politecast attribute is set, the packet
is sent once and immediately without any wake up strobes.

The listings 4.1 to 4.5 show pseudo-code for the most important functions
of politecast. The C code API is presented in appendix A and code examples
in appendix B.

1 Politecast send()

2 set Rime politecast attribute

3 set transmission power setting

4 invoke lower layer transmit mechanism

Listing 4.1: Transmitting with politecast

1 Politecast receive packet from underlying layer/primitive

2 if such exists:

3 invoke ’receive ’-callback

Listing 4.2: Politecast receiving packet

1 Politecast listen(time t)

2 if t 6= infinite:

3 start timer with expiration time t

4 on expiration , invoke politecast listen stop()

5 request MAC protocol to switch radion on

Listing 4.3: Politecast listening

1 Politecast listen stop()

2 check flags

3 if we are listening:

4 if timer is running:

5 stop expiration timer

6 request MAC protocol to regain control

Listing 4.4: Politecast stop of listening

1 Politecast listening timer expired

2 give back control to MAC layer

3 if such exists:

4 invoke ’timeout ’-callback

Listing 4.5: Politecast listening period expired
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Chapter 5

Evaluation

Politecast was evaluated with experiments and simulations in three case studies.
As politecast is qualitatively different from broadcast, there were inevitable
differences between implementations.

In the power saving MAC protocols used in the evaluations, there is a trade-
off between lifetime and performance, affecting latency and congestion. By
tweaking the MAC protocol timings, the sleep periods can be shorter or longer,
resulting in less or more repeated transmissions for a broadcast. For politecast,
transmitting more often means shorter listening periods can be used.

5.1 Method

The three case studies were simulations conducted in a network simulator, in-
field experiments with real hardware and deployment-like conditions and mi-
crobenchmarks conducted both experimentally on real hardware as well as in
simulations. The three case studies are Steal the Light, Neighbor Discovery and
the Lega System. They represent different kinds of application domains with
different characteristics and metrics.

5.2 Metrics

The four problems with broadcast can for the most part not be measured di-
rectly, and measurable metrics must be used as proxies.

5.2.1 Overhearing Costs

Overhearing when being disinterested is a waste of power which is measured
by radio utilization and amount of overheard traffic (number of received pack-
ets). The radio is generally the highest power consuming component in motes,
and all other components power consumptions are small in comparison. The
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power consumption differs in listen and transmission mode, therefore both are
measured.

5.2.2 Increased Congestion

With more nodes in a denser network follows more radio traffic, increasing the
risk of congestion. This is measured by change in radio utilization. Congestion
will cause an increase in listen mode utilization as a node will await a free
medium, and a decrease in radio transmission utilization as the radio CSMA-
CA mechanism backs off and waits for CCA. If CSMA-CA do not get CCA
within a defined period of time, the transmission will be dropped.

5.2.3 Biased Effort

The biased effort effect on power consumption is measured with radio utilization.
Both transmission and listen utilization are measured.

5.2.4 High Latency

Latency is measured as the time between when an event at the earliest could
occur, and when it really did (as in ideal versus real neighbor discovery latency),
or the time between two following events (start to finish of a transmission).

5.2.5 Other

Other metrics measure qualities that are hard to capture with the above factors.
The purpose with this is to shed light on the qualitative differences between
politecast and broadcast. E.g. accuracy for the neighbor discovery case study
can indicate how suitable politecast is compared with broadcast if a reliable
service is required.

5.3 Simulation Setup

Simulations were used where ground truth measurements were needed but too
hard to acquire with experiments. For example, for neighbor discovery, the
latency and accuracy are important and in order to measure them the position
is necessary, which is hard to get with high enough spatial resolution with many
nodes moving fast at the same time.

5.3.1 COOJA Simulation Setup

The simulated radio medium was the unit disc graph model (UDGM), which
means that three things can happen in collisionless communication: successful
transmission, probabilistically successful reception proportional to distance and
transmission power, or unsuccessful transmission (Figure 5.1). UDGM is a
simple model (see Section 2.1.3) but it fulfills the purpose of the simulation as
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Figure 5.1: The node has 100 % transmission success within the first radius
and receives interference within the outer radius, resulting in a lower probability
for a successful transmission.

Generate start
position and wait time

Generate target
position and speed

Generate new
wait time

Wait
Move to
target

Wait over

Arrive at
target

Figure 5.2: The principle behind the random waypoint mobility model.

it makes comparisons between implementations easier when no environmental
effects are taken into account.

5.3.2 Position data, RWMMSim

The COOJA simulator accepts position data for the simulated nodes. I wrote a
WSN mobility simulator that can generate such position data for any number of
nodes moving in 2D-space: RWMMSim. RWMMSim uses the random waypoint
mobility model (RWMM) [22] and is highly parameterizable, e.g. speeds, time
durations, space dimensions. It also outputs statistics and other data, e.g.
the time when nodes are in or out of range and what distance each node has
travelled. The beginning of the simulation is discarded to avoid a large number
of simultaneously stationary nodes.

RWMMSim initially generates random starting positions and wait durations.
When the wait is over, a speed and target position is generated. When target is
reached, the node waits for a random time before starting over with a new target
(Figure 5.2). Figure 5.3 shows an aggregate of all the positions the simulated
nodes appear at during the duration of the simulation.

I chose parameters that are plausible for people moving in a large confined
space, with speeds approximately between slow walking and fast running. The
full set of parameters is shown in Table 5.1. The same position data was used
in all neighbor discovery simulations.
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Figure 5.3: All the generated positions of the nodes in the simulation.

Time [s] 600
Minimum speed [m/s] 1.0
Maximum speed [m/s] 4.0
Minimum wait time [s] 2.0
Maximum wait time [s] 10.0
Time step [s] 0.2
Number of nodes 15

Size [m2] 150 ∗ 150

Table 5.1: Parameters for generating position data in RWMMSim.

5.4 Case Study: Steal the Light

Steal the light is a token passing-like application with low latency requirements.

5.4.1 Steal the Light Principle

In Steal the Light, one node has the light (henceforth the ”keeper”), and other
nodes that do not (henceforth called ”stealers”) will try to come close to steal
the light. As this is an application meant to be used in a playful setting, it is
important that the delay between coming in range to stealing the light is low.
A long delay will make the feature seem slow and unresponsive. Steal the Light
can be said to be the inverse of the playground game ”tag” and is illustrated in
Figure 5.4.
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Figure 5.4: Steal the light: (left) node A (to the right) has the light while B (to
the left) moves closer. Periodically, A transmits beacons with a low transmission
power setting, thus having a very short range, telling other nodes that it has the
light. (middle) B is in range and receives the beacons from A. It sends a request
to steal the light. (right) A surrenders the light to B.

Parameter Broadcast Politecast
MAC protocol ContikiMAC ContikiMAC
Channel check rate [Hz] 16 16
TxP [dBm] -25 -25
Beacon period [s] 0.5 0.5
Light keep time [s] 1 1

Table 5.2: Settings for Steal the Light, broadcast and politecast versions.

5.4.2 Implementation

The light is kept for a minimum amount of time, and is only passed on if the
nodes are stationary. Both keeper and stealer transmit unaddressed beacons to
spread node state information to neighbors in range in order to reduce latency
and increase accuracy (not missing an encounter). A stealer hearing a keeper
requests the light, and a keeper hearing a stealer will offer the light, which will
then be followed by a request. The request is answered by a go-ahead, con-
cluded by an acknowledgment. The beacons are transmitted with broadcast or
politecast respectively, but all other communications are unicasts. The settings
are shown in Table 5.2.

Politecast The only differences between the implementations are that in the
politecast implementation beacons are transmitted with politecast and a listen-
ing period is used. The listening is triggered by sensor readings. When the
accelerometer senses that the user stopped moving, it triggers a listening for a
fixed amount of time. The listening period is slightly longer than the beacon
period, 505 ms. After having given up the light, the node starts a short listen
just before the minimum keep time is over. That way it will hear the first beacon
from the keeper, should they still be in range.
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5.4.3 Metrics

Power Consumption Radio utilization is here a proxy for power consump-
tion. The total (Rx and Tx) radio utilization is measured with energest. Both
listen and transmit utilization are measured.

Congestion Congestion is measured by the radio utilization in transmit mode
(Tx mode). Per node, the total Tx mode utilization is divided with the number
of token passings, and the mean taken over both nodes is normalized with
politecast as base. The radio utilization is measured with energest.

Latency Delivery latency is the time from transmitting a beacon until having
delivered the light. It is measured locally on each node with software timers
having a 1

16384 s resolution.

5.4.4 Simulation Setup

Two simulations were conducted. In the mobile scenario, two nodes were used,
of which one started with the light. They moved in a predefined pattern with
varying stopping times between 10–60 seconds, using the Mobility plugin in
COOJA. The same movement data was used for both broadcast and politecast.
As the accelerometer is not simulated in COOJA, the listening was instead trig-
gered by a listening scheduler synchronized to the movement data from Mobility
to trigger when the node stops.

In the static scenario, two nodes were situated close to each other and con-
stantly swapping the light between them. The rationale for this simulation was
to see how the tradeoff between lifetime and performance would compare be-
tween implementations when the beacon rate and the movement intervals varied.
The movement intervals were 5, 10, 20 and 40 seconds with fixed beacon rate
of 2 Hz. The beacon rates were 0.5, 1, 2, 4 Hz with a fixed movement interval
of 10 seconds. The lifetime is calculated with a Tmote Sky mote as basis, using
two 2200 mAh batteries and neglecting the power consumption for all other
peripherals.

5.4.5 Results

Using politecast, lifetime is longer and latency, congestion and overhearing lower
compared with broadcast.

Power Consumption Politecast lowers the power consumption with up to
74 % compared with broadcast (Figure 5.5). Politecast gets a longer lifetime
when the beacon rate is lower, while the opposite is true for broadcast. The
reason for this is that with a higher beacon rate, the listen time can be shorter
while broadcast has a fixed cost. When the movement interval increases, the
politecast implementation gets a longer lifetime as there is less listening trig-
gered. Broadcast has approximately the same for all movement intervals. This

31



 0

 2

 4

 6

 8

 10

 12

 14

Politecast Broadcast

U
til

iz
at

io
n 

[%
]

Power consumption: radio utilization

2.1 %

8.0 %
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Figure 5.6: Lifetime depending on beacon rate. As politecast need to listen for a
longer time with decreasing beacon rate, it also gets a shorter lifetime. Broadcast
gets a shorter lifetime when beacon rate increases as it transmits more data.

shows the importance of having a good strategy for when and for how long to
listen.

Congestion Politecast lowers radio transmission utilization for every token
passing with 95 %, compared with broadcast (Figure 5.8). This shows that
broadcast transmits much more than politecast, and thus politecast is more
suited for dense networks as it can lower congestion.

Latency The politecast implementation is more than twice as fast as the
broadcast (Figure 5.9). The mean delivery latency for politecast is 287 ms and
for broadcast 606 ms. The poor performance with broadcast can shatter the
experience in an interaction rich application.

32



 0

 100

 200

 300

 400

 500

 600

 700

 5  10  15  20  25  30  35  40
Li

fe
tim

e 
(d

ay
s)

Movement interval (seconds)

Performance vs Life time tradeoff

Broadcast

Politecast

Figure 5.7: Lifetime depending on mobility. The more often the simulated node
moves, the more often politecast has to listen, thus shortening lifetime. Broadcast
has the same lifetime for all intervals as it has no movement based trigger.

 0

 5

 10

 15

 20

Politecast Broadcast

R
ad

io
 T

x 
ut

ili
za

tio
n,

 n
or

m
al

iz
ed

Congestion: radio Tx utilization, normalized

1.00

19.35

Figure 5.8: Politecast has a much lower congestion than broadcast. Broadcast
transmits up to more than 19 times as much as politecast for every token passing.

5.5 Case Study: Neighbor Discovery

Neighbor discovery is an important application domain with great importance,
especially as more and more devices are mobile.

5.5.1 The Neighbor Discovery Primitive

Contiki has a neighbor discovery primitive (henceforth called ndBROAD) that
uses periodic broadcasts to advertise itself to other nodes.

Implementation with Broadcast ndBROAD uses broadcast, so there was
no modification necessary but choosing the parameters that would control tim-
ings. They are parameters for the primitive, and parameters for X-MAC. The
primitives parameters are the min period and max period. After a first period
of init period the advert is periodically transmitted at a random time between
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Parameter Sim1 Sim2 Sim3 Sim4 Sim5 Sim6
On time [ms] 5 5 10 5 5 5
Off time [ms] 58 58 115 495 58 495
Strobe time [ms] 80 80 135 595 80 595
Strobe wait time [ms] 4.4 4.4 8.8 4.4 4.4 4.4
init period [s] 0.5 1 0.5 0.5 2 2
min period [s] 0.5 1 0.5 0.5 2 2
max period [s] 5 3 5 5 7 7

Table 5.3: X-MAC settings for ndBROAD in simulations.

min period and max period to avoid collisions. The parameters for X-MAC (see
Figure 2.7) control sleeping and transmission timings. Lowering them makes
broadcasts faster, as fewer strobes are transmitted. It follows that the medium
must be checked more often so that no transmission is missed. The parameters
for the simulations are shown in Table 5.3.

Implementation with Politecast The implementation with politecast (he-
nceforth called ndPOLITE) transmits periodic beacons, with politecast. Lis-
tening was triggered by a periodic timer. For ndPOLITE, there are three pa-
rameters beyond the X-MAC settings — advert period, listen length and lis-
ten period. They set how often adverts shall be sent, how often and for how
long to listen. As in ndBROAD, beacons are transmitted at a random time
within the listen period in order to minimize the risk of successive collisions.

5.5.2 Metrics

Congestion Congestion is measured with the number of radio collisions.
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Parameter Sim1 Sim2 Sim3 Sim4 Sim5 Sim6
On time [ms] 5 5 5 5 10 5
Off time [ms] 58 495 495 495 495 495
Strobe time [ms] 80 595 595 595 595 595
Strobe wait time [ms] 4.4 4.4 4.4 4.4 8.8 4.4
listen period [s] 5 5 10 1 10 10
listen length [s] 0.28 0.28 0.75 0.125 0.28 0.28
advert period [s] 0.25 0.25 0.69 0.5 0.25 0.25

Table 5.4: Settings for ndPOLITE in simulations.

Power Consumption Power consumption is measured by estimating the ra-
dio utilization with energest and COOJA. By measuring utilization rather than
power, the result can be directly applied on other hardware with differing power
consumption.

Latency Latency is measured as first and full discovery latency by cross ref-
erencing the position data from RWMMSim with the timestamp of when a node
receives a beacon. First discovery latency is the time between nodes coming in
range and one node discovers the other. Full discovery latency is when also the
second node discovers the first.

Accuracy Accuracy is a metric of how well the implemented neighbor dis-
covery works at discovering neighbors. The more missed discoveries, the lower
the accuracy. Partial discovery is when only one of the two nodes discover the
other, full discovery is when both discovers each other. As with latency, the
position data from RWMMSim used with the ranges set for UDGM in Table 5.5
is used to calculate if and when two nodes should discover each other, and the
log from each node shows whether they did or not.

5.5.3 Simulation Setup

15 nodes were simulated, moving in a confined space. In order to see how an
indoor environment with high versus very low RF attenuating characteristics
would affect the outcome, I ran the neighbor discovery simulations twice, once
with the full reception-radius set to 51 m and once set to 75 m as seen in Ta-
ble 5.5. In the 75 m setting, the transmissions reach farther, meaning more
interference and collisions but also potentially more discoveries.

5.5.4 Results

Power Consumption Most noticeable is how the radio utilization varied in
between implementations (Figure 5.10). For broadcast, the maximums were on
average 21 % higher than the minimas, for politecast it was 3.4 %. The large
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Radio reception range [m] 50 and 50
Radio medium model UDGM
Radio reception range [m] 50 and 50
Radio interference range [m] 51 and 75
Time limit [s] 600
Random seed 123456

Table 5.5: Parameters used in COOJA and RWMMSim for the Neighbor Dis-
covery simulations.
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Figure 5.10: The average radio utilization in neighbor discovery. The utilization
for politecast varies by a small amount from the average values, as expected as
politecast does not wake up neighbors. Transmission radius (left) 51 m, (right)
75 m.

variation in utilization is because of the overhearing problem, and the small
variation for politecast shows how the politecast implementation is unaffected
even in dense networks. This means that a service or application can be designed
with politecast to use a predefined radio utilization, which will not deviate much
from the set value even if there are many neighbors or high congestion. As it
will not wake up nodes, it should also not affect them much.

Congestion Politecast has generally fewer collisions than broadcast, except
for Politecast1 which has the highest advert rate. As could be expected, the
amount of collisions increase when the reception radius increases (Figure 5.11).
With the reception radius was increased from 51 to 75 meters, this is ca 50 %
longer range, but also 125 % more surface coverage. The effect is similar to
increasing transmission power, resulting in an increase in congestion. Both
implementations scale equally much proportionally, on the order of 10–20 times
as many collisions in the 75 meter case than for 51 meter.

Latency As congestion increases, latencies also increases due to CCA backoff
delays (Figure 5.12), for both broadcast and politecast implementations. As
politecast transmissions are direct, this highlights the listen policy problem.
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Figure 5.11: The plots shows average total amount of collisions for the two
transmission radii. (left) 51 m, (right) 75 m.
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Figure 5.12: The average latency of neighbor discovery. Transmission radius
(left) 51 m, (right) 75 m.

Choosing when and for how long to listen has a great effect on performance and
lifetime.

Accuracy The broadcast implementation has generally higher accuracy (espe-
cially Broadcast2), because it forces nodes within listening distance to wake up,
at the cost of reduced lifetime and increased congestion. Figures 5.13 and 5.14
show the accuracy of neighbor discovery at the two different radii. Broadcast
gets a lower accuracy when the radius is increased, due to collisions. Politecast
is not as sensitive and maintains approximately the same accuracy. However,
for both primitives, the effect on accuracy from increasing range is small, on the
order of 1–3%.

5.6 Case Study: The Lega System

The Lega [40] (”Lega” is a Swedish word for the temporary and visible trace in
the vegetation after an animal that has been lying down) was used for exploring
and enabling richer group interaction and bodily expressions in the context of an
art exhibition. Every year, the art gallery Liljevalchs [8] hosts an art exhibition
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Figure 5.13: The accuracy of the neighbor discovery at 51 meter reception
radius. (left) Broadcast, (right) politecast right.

Figure 5.14: The accuracy of the neighbor discovery at 75 meter reception
radius. (left) Broadcast, (right) politecast right.

called V̊arsalongen which takes place during two months in the spring. We, the
Designing Supple Systems project group, ran the Lega system with users during
the entire exhibition.

Every participant in a group of 2–5 persons is given a device, called Lega.
The user can then interact with the group by forming, leaving and finding
”traces”. By interacting with the Lega the user forms the trace, a message
containing a digital version of that interaction.

The Legas are built around Sentilla JCreate nodes. Vibration motors, touch
sensors and LEDs are connected to the expansion port in the bottom, via port
expanders. A servo motor is placed on the top side and worked as a controllable
press button and indicator.

32 static infrastructure nodes (henceforth ”IS nodes”) are placed throughout
the exhibition. They transmit radio beacons, which are used for approximating
a position in the Lega. They also keep the traces and gather data for off line
analysis and statistics. The trace is transmitted to the IS node that is closest,
in which it is saved until another Lega enters that approximate position. Then
it is transmitted to the Lega and ”played back” with LEDs and vibrations.
From knowing who the sender was, seeing and feeling the trace played back,
the receiver makes an interpretation of what they sender might have wanted to
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Figure 5.15: Lega system overview, showing the personal devices (Lega) and
the static infrastructure nodes used for positioning and storing traces.

communicate. See Figure 5.15 for an illustration of the system, and the picture
on the front page of the thesis for what the Lega looks like when it is leaving a
trace.

Being hidden in the walls, they are hard to reach. Thus, changing batteries
on the 32 IS nodes is expensive, time consuming and cumbersome, so the radio
must be turned off as much as possible, while still ensuring performance. As
they do not use LEDs or sensors, the radio is the highest power consumer.

Positioning

Position awareness is a fundamental corner stone of the Lega system. A Lega
should not play a trace if it is not on that location where the trace was left.
A spatial resolution of about half a small room is sufficient (corresponding to
a few meters). By having more IS nodes with a shorter transmission range, a
higher resolution can be achieved.

The basis for approximating the position is the beacons transmitted by the
IS nodes every second. A Lega approximates the most probable location from
the number of beacons received per time unit, which was received last and the
RSSI. Every third beacon also contains information on eventual traces saved on
that node.

The more received beacons, the more data for the software to approximate
a position from. This is because in theory there should be a good correlation
between RSSI and distance, but in practice this is only true for an average
on many samples [38]. For the Lega system, I wrote a software library called
Position with which the Lega keeps a neighbor table based on the received
beacons. With a function call, the table is searched for the most likely position.

Difficulties with Positioning Overhearing and an unpredictable environ-
ment were the biggest concerns when getting the positioning to work reliably,
with low latency and with high accuracy. The Liljevalchs art hall is built mainly
out of bricks and wood, making it practically transparent to RF. Beacons must
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Figure 5.16: The map shows the position and orientation of the infrastructure
nodes (Tmote Sky) at Liljevalchs bottom floor. The arrows point in the direction
the PCB PIFA λ

4
-dipole antenna was directed; i.e. the USB connector pointed in

the opposite direction. As we noticed on site, even though the application note
for the PIFA antenna [6] stated that it is fairly omnidirectional, the orientation
seemed to matter much. We did not do any measurements on this though. Two
nodes were on different floors: 1.0 was in the basement and 43.0 was one floor
up, with view over the large and open sculpture hall.

be transmitted often enough for positioning with low latency when the user
moved around. Beacons must also be transmitted with a fairly high transmiss-
ion power as many objects absorb the radio signals: the visitors, the hands of
the user, and the Lega shell itself. The number of visitors varied much and
fast: a 5 ∗ 6 m2 room could in 1

2 minute go from 25 to zero visitors and vice
versa. People walked in groups and often in tight, clustered formations. Most
IS nodes were hidden in small cupboards in the walls, ca 20 cm above floor level
at positions according to Figure 5.16.

As a result, a high beacon rate together while at the same time avoiding
congestion and ensuring long lifetime were design goals. Following this reasoning
based on empirical observations, IS nodes was set to transmit beacons once a
second with a transmission power setting of -7 dBm. This turned out to be a
good compromise between having low enough transmission power to minimize
overhearing between rooms, but also high enough to be received.

5.6.1 Implementation

Broadcast Version In order to achieve low latency and transmit one beacon
per second, I changed the settings of the X-MAC protocol according to Table 5.6.
Now, it checked the medium more often, enabling the use of a shorter strobe
train at the cost of a shorter lifetime. This makes for less congestion and lower
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On time [ms] 5
Off time [ms] 244.5
Strobe time [ms] 295.5
Strobe wait time [ms] 4.4

Table 5.6: X-MAC settings for broadcast version.

On time [ms] 5
Off time [ms] 495
Strobe time [ms] 595
Strobe wait time [ms] 4.4

Table 5.7: X-MAC settings for politecast version.

latencies. Otherwise, the implementation is exactly as the politecast version
except that a broadcast connection is used. Transmitting a beacon would take
ca 0.3 seconds, leaving 0.7 seconds until the next beacon.

Politecast Version The politecast version transmits a beacon every second
using the X-MAC settings in Table 5.7. This would make for a good tradeoff,
as the number of transmissions that would use strobes (unicast and broadcasts)
was anticipated to be rare in comparison.

The listen policy could have been based on a motion trigger (accelerome-
ter), but instead the Legas are always listening. As the Legas are high power
consumers, the radio power consumption is only a small fraction of the total.
When running idle, sensors are constantly being read and some LEDs are on
making the power consumption reach about 0.5 W. When playing a trace the
peak power consumption reaches 3–6 W for hundreds of milliseconds as the
servo and vibration motors starts and more LEDs are lit up.

5.6.2 Metrics

Overhearing Costs Total radio utilization is the primary metric for power
consumption for the IS nodes and measured with energest.

Congestion Congestion is measured with radio Tx utilization and the number
of overheard transmissions. By comparing the radio Tx utilization with a known
base case – a node with no neighbors – the effects of congestion can be measured.
A lower utilization means that transmissions has been dropped or backed off,
delaying other transmissions thus reducing the Tx utilization. The number of
overheard beacons should ideally be zero as no IS node is interested in any other
IS node.
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Figure 5.17: The average radio Rx utilization, which is the most power con-
suming mode (for CC2420, nearly 10 % higher than transmitting at full power).

5.6.3 Experimental Setup

For each implementation the infrastructure was running for one hour using each
implementation, on location without any visitors or personnel in the exhibition
halls. Empty halls was the most common case during the exhibition opening
hours as most visitors came in the evenings and it was mostly empty during the
day. The IS nodes were placed in the same positions as during live user studies,
as seen on the map in Figure 5.16. All nodes except node 41.0 were operational.

5.6.4 Results

Overhearing The politecast implementation has much lower overhearing costs
than broadcast. The cost is also consistent (figures 5.17 to 5.21). Most broadcast
IS nodes have 25—35 times higher Rx utilization than politecast. As politecast
does not wake up neighbors, the average utilization is consistent no matter how
many neighbors a node has. The makes it possible to predict lifetime. For
broadcast, the nodes with the fewest neighbors also had the lowest radio uti-
lization, clearly showing the problem with overhearing. The broadcast node
with the lowest Rx utilization (Figure 5.17) was placed in the basement and
had no neighbors.

Both politecast and broadcast versions overhear beacons, but politecast
much less than broadcast (Figure 5.19). The reason for this is that broadcast
wakes up the neighbors no matter if they are interested or not. Politecast does
not wake up neighbors and has far fewer overheard beacons than broadcast. It
is not zero as nodes are using X-MAC and has a 1 % listening duty cycle, thus
any overheard beacons occurred during such a wake up period.

Congestion Politecast has a low and consistent radio Tx utilization, meaning
that congestion is low and predictable. This is in contrast to broadcast where
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Figure 5.18: The radio Rx utilization for politecast is consistent and low, no
matter how many neighbors a node has.

Tx utilization is on average about 30 times higher and varies depending on
the number of neighbors of the node (Figure 5.20). Ideally, all nodes in each
implementation respectively should have the same Tx utilization as they trans-
mit beacons with the same packet size and periodicity. Clearly, broadcast had
problems. The node with no neighbors transmitted the most, approximately
five times more than the least successful node, which had many neighbors. The
cause of this behavior is congestion, as the CCA detects energy and CSMA-CA
backs off the transmission. In contrast, all the nodes in the politecast version
have a low and consistent radio Tx utilization (Figure 5.21). It is low because
it does not transmit strobes and consistent because congestion is very low, not
triggering CSMA-CA backoffs.

Robustness The broadcast implementation was found to have several out-
ages of service during the evaluation period, whereof one node was down more
than 45 seconds. Politecast had no such outage period. The positioning service
needs to hear beacons in order to approximate a position. Long durations of
suppressing transmissions due to congestion can cause severe application per-
formance degradation. If CCA detects energy, CSMA-CA will first suppress the
transmission and wait (backoff). If energy is repeatedly detected when trying to
retransmit, it will finally drop the packet, meaning the transmission will never
be sent.

If beacons are suppressed or dropped, the Lega will not be able to save traces
at the right IS node or find other users traces when passing by, and the user
experience will be worse. Here, a 15 second time period was considered critical
during which beacons had to be heard if the user was at that location, or else
the service was accounted for as being down. For politecast, the service never
went down on any node. For broadcast, the worst coherent down period was
found to last for more than 45 seconds and the worst node had in total 18 such
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Figure 5.19: The number of overhead beacons per hour on average. This shows
how broadcast wakes up neighbors, even if they are not interested in the informa-
tion being transmitted. The typical broadcast node has 10—25 times the number
of overheard beacons than politecast.

periods during the measurement period of one hour, meaning a 7 % down time
(Figure 5.22).

By comparing the amount of transmissions to the ideal amount, broadcast
was found to have suppressed transmissions in all nodes but one (Figure 5.23).
The worst performing node dropped almost 80 % of the transmissions. For
politecast, all nodes transmitted all beacons and had no packet drop.

In the broadcast version, the effects of extreme congestion are higher total
radio utilization: the listening utilization increase as the backoff mechanism
waits for a silent medium, and the transmission utilization decrease as the node
is suppressing the transmissions. The net sum is an increase as the decrease is
small in comparison to the increase. Figure 5.24 shows the measurements from
a small two-node experiment. The experiment settings are extreme, but more
clearly shows the effects of severe congestion and confirms the measurements
from the IS nodes.

44



 0

 1

 2

 3

 4

 5

U
til

iz
at

io
n 

[%
]

Node

Zoom in on Radio Tx utilization

Broadcast
Politecast

Figure 5.20: Utilization of radio in Tx mode. The ideal utilization for broadcast
is around 2.8–3 %. Less than that means that congestion forced the node to back
off or suppress transmissions. Politecast is almost too low to be seen in this plot.
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Figure 5.21: The politecast version is low and consistent on radio utilization in
transmission mode. This indicates that congestion was very low as transmissions
rarely or never was forced to back off by CSMA-CA.
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Figure 5.22: The broadcast version had catastrophic outages of service in parts
of the network due to congestion. Node 34.0 was a particularly bad case with ca
8 % downtime. The politecast version had zero outage. Time resolution was 15
seconds as this was considered a critical interval.
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Figure 5.23: The broadcast version had problems with congestion leading to
service performance degradation as beacons were not sent at the intended interval
of once per second. In the plot, the ideal value is zero percent meaning no dropped
transmissions.
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Figure 5.24: The effects of congestion on average Rx- and Tx utilization. The
application is the same as in the experiment at Liljevalchs. ”No congestion” refers
to a single IS node and ”Congestion” refers to when another node at a 10 cm
distance broadcasts every 0.38 seconds, and as every beacon takes 0.30 seconds,
this does not leave much room for additional traffic.
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Chapter 6

Related Work

Politecast has to the best of my knowledge no peers in the body of work in
related fields. Instead, there are many problem areas where politecast can be
applied.

6.1 Systems

Supple Systems and LR-WPAN Low rate wireless personal area net-
works (LR-WPAN) are networks with devices intended to be worn on a person.
Figure 2.1 shows an example of a person with several devices in the clothes,
phone etc. They are likely to be highly physically and logically mobile, have
unpredictable movement patterns and connectivity [29]. Networks are hetero-
geneous, non-uniform and rapidly changing. This means that any transmissions
should be as fast as possible and opportunistic. Also, neighbor discovery should
be fast, efficient and an ongoing effort. Thus, anticipated lifetime is shorter
than static WSNs doing sense-and-send or batch-and-send, such as the Volcano
monitoring WSN described in Section 2.1.1.

As supple systems [34], feedback is desired and expected, in the form of light,
sound, motion etcetera. Also, there is high probability that other networks are
co-located in the same physical area, using the same radio hardware and possibly
resulting in semantic interference [32].

FriendSense FriendSense [51] is a way for co-workers to express feelings
and wishes in the context of the office and with other co-workers. Every user has
a personal node (Sentilla JCreate), which keeps a neighbor table and periodically
measures the acceleration to approximate the degree of movement. This is
periodically sent to the data sink node, which relays the data over a serial
connection to a server PC. The server application translates movements into
parameters shaping individual avatars on the public screen: color, position and
movement. The radio communication is one-way as nothing is sent back to
the personal node and there is no explicit communication between the personal
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nodes. Instead, the personal nodes exploit the overhearing of transmissions to
the sink, but to keep congestion low the update frequency (i.e. transmissions)
is low, resulting in high latency.

eMoto eMoto [52] is a mobile emotional messaging system for exploring
the affective loop — when the intellectual experiences are impossible to separate
from the sensual. One goal with the interaction was to be engaging physically,
intellectually and socially and enable embodied interaction. The system uses
a custom built input device, similar to a Stylus, to a mobile phone to enable
emotion related gestures as input. The stylus has an accelerometer and pressure
sensors and connects to the phone with Bluetooth. The user studies singled out
some of the disadvantages with Bluetooth as it has a high latency — several
seconds — when first connecting, high power consumption and loses connection
forcing the user to wait for additional seconds as the device reconnects.

6.2 Positioning and Localization

MoteTrack MoteTrack [43] is an approach to estimate the position of
mobile nodes in a confined space. Static infrastructure nodes are deployed at
known positions. They transmit beacons which are received with a mobile node.
By comparing the RSSI of the received beacons with a pre-measured signature
database, the position could be approximated with an accuracy of about 1 m
at best. Their work focused on making the system decentralized and robust to
node failure as one main usage of the system is rescue operations in e.g. office
buildings.

Doppler Shift Positioning The authors of [39] used the characteristics of
radio wave propagation to track mobile nodes. Mobile nodes transmit beacons
which are received at static infrastructure nodes. The static nodes measure the
RF Doppler shift of the broadcasted beacon and approximate the position and
velocity of the mobile node. Accuracy was reported to be as good as 1.3 m for
positioning and 0.1 m/s for speed. Focus was on developing filtering algorithms
that could accurately handle both fast and slow changes of the mobile node
trajectories.

RSSI-fluctuation Based Positioning In [60], the authors achieved mo-
tion tracking through walls using IEEE 802.15.4 nodes scattered around a build-
ing. Because RSSI depends on the sum of all multipath components, objects
moving within the building would affect the RSSI as they moved. The static
nodes around the building take turns to broadcast a beacon according to a sim-
ple token passing protocol. A node overhears a beacon from another node and
decides if it is next in turn to transmit a beacon. A snooping node overhears all
the broadcasted beacons and measures the RSSI, which are fed to a computer
that runs the object position approximation algorithm.
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6.3 Programming Abstractions

Logical Neighborhoods Many programming abstractions for neighbor-
hoods deal with homogenic networks. Logical neighborhoods [44] shifts focus to
decentralized networks where nodes are heterogenic, i.e. are different in terms of
hardware and software. By replacing the notion of a physical neighborhood with
a logical one, a programmer can address neighbors that fulfills certain criteria,
e.g. broadcast a request for temperature readings close to nodes with humidity
sensors. The authors state that broadcasts are used in order to keep it simple,
but does not go into detail as to any specifics on how they are actually carried
out.

Hood Hood [58] is a programming abstraction for neighborhoods that uses
local definitions (i.e. on each node) of neighborhoods and shared variables,
called attributes. Nodes regularly broadcast their shared variables (e.g. sensor
readings) and nodes that are interested in them (determined by filter conditions)
caches them locally. E.g. node A can regard B as a neighbor but not vice
versa; A finds node Bs sensor readings interesting and so caches what B shares.
Broadcast is used for both data sharing and neighbor discovery. The authors
state that the broadcasts must be cheap in terms of power consumption.

Abstract Regions Abstract regions [56] is a set of programming abstrac-
tions that are similar to Hood, but adds mechanisms for data aggregation and
controlling the resource/performance trade-off. There are four categories of
abstractions in Abstract regions: neighbor discovery, addressing (nodes in the
regions), data sharing and data reduction (of the shared data by some rule).
The neighbor discovery may use broadcasts and is a continuous process. The
data sharing can also be implemented with broadcasts, so that nodes could
overhear and cache data locally. Abstract regions are defined by a rule, such
as based on radio metrics or geographic data, and a node can be a member in
several regions at the same time.

6.4 Duty Cycling MAC Protocols

X-MAC In X-MAC [21], nodes periodically wake up and listens. The way
broadcasting should be performed is not specified in the X-MAC paper, but one
way is transmitting a strobe train for a period longer than the sleeping period
before transmitting the actual data packet. The number of strobes is controlled
by the parameters strobe train length and strobe wait time. Networks using
X-MAC have scaling problems due to the congestion that may occur if many
nodes are colocated.

ContikiMAC ContikiMAC is similar to X-MAC in that it is an LPL
scheme which periodically wakes up to listen for traffic, but uses CCA instead of
idle listening. For every listening period, it samples twice with CCA with a small
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sleeping delay in between. This makes for an extremely low radio utilization.
Broadcasting in Contiki-MAC is similar to X-MAC, but instead of transmitting
strobes, the data packet is transmitted repeatedly so that when a receiver wakes
up, it receives the data packet immediately and can go back to sleep. The
problems are similar to X-MAC, as congestion and biased effort are still issues.
Latency is lower for the receiver, but as there are still more traffic, this limits
the possibility for quick responses until the entire broadcast is over.

RI-MAC RI-MAC [50] is an LPP scheme. Nodes waking up transmit a
beacon and listens for a short while before going back to sleep. A node wanting
to send must await the probe and then transmit. Broadcasts are performed
by listening for a whole sleeping period and repeatedly responding to beacons
from waking nodes. Congestion and scalability are not so much a problem as
in X-MAC, but disinterest and biased effort are still problems. In very dense
networks that perform broadcasts often, congestion might be a problem though.

S-MAC S-MAC [61], which is a synchronized MAC protocol, supports
broadcasts in two ways. One way is for the sender to repeatedly transmit
the packet when the neighbors wake up on their respective time slot, this has
the same drawbacks as for RI-MAC. The other way includes creating virtual
clusters, which essentially is a group of nodes that have coordinated time slots.
The drawback with this approach is the lower flexibility and shorter lifetime for
the nodes in the virtual cluster, especially for nodes bordering two clusters as
they must follow both schedules.

6.5 Communication Primitives

Implicit Announcements Implicit announcements (IA) [19] is a pro-
posed mechanism for spreading data from one to many nodes that are using
power saving MAC protocols. It works by piggy-backing the announcement, i.e.
two byte data and and a two byte identifier, on the next outgoing transmission.
It is disregarded at the MAC layer in the receiver unless explicitly waiting for
them. This is good for propagating small amounts of data to neighbors, such
as ETX to data sink. The small payload possible of only two bytes can be too
small for some applications. Politecasts can have arbitrarily large payloads, and
no limitations in itself regarding addresses etc. Also, in contrast to politecast,
IA is not immediate but waits for an outbound transmission or timer expiration.
Therefore, IA and politecast have in part different application domains.

802.15.4 Beacons 802.15.4 specifies a format for beacons [14] used in
superframe architecture networks. The beacons are periodic and mark the be-
ginning and end of a superframe period consisting of 16 timeslots. They are
synchronous, thus requiring precise timing. The beacons are not intended for
data transfer, but rather enabling new nodes to synchronize with the super-
frame timings. Politecast transmissions are intended for data transfers as well
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as beacons. They can be periodic, but just as well non-periodic. There are no
limits on packet size (except what is imposed by standards, radio hardware or
underlying software architecture). Therefore, the 802.15.4 beacons are a very
small and finite subset of the politecast application domain, as they can be
implemented with politecasts, but not vice versa.

Multihop Broadcasting Multihop broadcasting is used for reaching every
node in the network, even if the initiator cannot reach the farthest ends it-
self. The purpose is propagation of data, whether it be new parameters, global
commands or a route discovery request. The following multihop broadcast-
ing mechanisms rarely focuses on exactly how the broadcast transmission itself
would be carried out, assuming that the MAC layer takes care of that, but
rather focuses on whether or not a node should retransmit a broadcast it has
received. Other mechanisms can use a counter- or probability based scheme, an
additionally covered area scheme or neighbor knowledge schemes [59].

Flooding Indiscriminate flooding is the worst case of flooding mechanisms.
All nodes receiving a flooding packet retransmits it if it has not already done
that. This can lead to the broadcast storm problem [45]. A sequence number in
the packet is used in order to stop cyclic redundant transmissions of the same
packet.

Polite gossip One way of reducing the broadcast storm problem is the
polite gossip mechanism in Trickle [42], in which a node which hears a broadcast
does not retransmit it unless it has something new to add. Trickle uses this for
propagating code over a deployed WSN.
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Chapter 7

Conclusion

With this thesis, I identified four problems with broadcast, and proposed how a
new network primitive, politecast, could solve them. With simulations and ex-
periments I showed how the four problems affect node lifetime and performance
in low power wireless sensor networks. I implemented politecast in the Contiki
operating system and evaluated it against broadcast and showed that politecast
can offer a longer lifetime and higher performance.

Using politecast requires a new way of thinking, going from a push to a
implicit pull way of communication. The how and when to listen becomes
important questions. I used two triggers in the evaluations: a periodic and a
movement based but the choice of listen policy is still an open research question.

Politecast is not a broadcast replacement. They are qualitatively and se-
mantically different. Politecast is first and foremost suitable when a node shares
information that few are interested in, but it does not know beforehand which
nodes are. It is less suitable for applications using unexpected and critical
transmissions (e.g. an alarm signal).

7.1 Advantages with Politecast

Any node that is interested and listening can take part of a politecast trans-
mission as politecast is not addressed to any recipient. This makes it good for
sharing non-critical data with many.

The burden lies mostly with the receiver, which must be awake and listen-
ing for the politecast transmission. This is in contrast to broadcasting in e.g.
X-MAC, ContikiMAC or RI-MAC. This is advantageous in cases where it is
more important that the senders rather than the receivers have a long lifetime,
such as in the Lega system.

Politecast makes for a low latency transmission as it does not have to do
repeated transmissions. The enables high performance in interaction rich ap-
plications such as the Lega. It also minimizes overhearing to nearby nodes, not
disturbing them if they are not interested, making more dense networks possible.
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This also makes it good for applications where one or many shares information
often that few are interested in, again like in the Lega system.

Politecast is more deterministic in terms of radio utilization than broadcast
because of the overhearing and congestion problems. This enables designing
an application to consume a pre-deployment fixed amount of power and thus
predict lifetime, in contrast to broadcast in which it depends on the number of
neighbors. For example, a neighbor discovery service can be designed so that it
always uses 7 % radio DC.

7.2 Limitations of Politecast

Politecast requires any receiver to be explicitly listening for transmissions, mak-
ing politecast unsuitable for unexpected transmissions as the sender cannot
know that the receiver is awake to receive the data.

If the listening policy is poor, the lifetime will be reduced due to excessive
listening. How to trigger listen and for how long to listen are open questions
that need to be handled in each application. There is no generic answer but
it also enables flexibility as the tradeoff between performance and lifetime is
exposed.

7.3 Future Work

Listen Policy For a continuous service, the explicit listening can amount to
a high power consumption if not implemented carefully, and thus a proper lis-
tening policy must be used. The question is when and for how long to listen. It
could for example be triggered by sensor readings, e.g. movement measured with
an accelerometer, or a periodic timer trigger. The authors of Disco [28] created
a mechanism for deterministic coexisting time slots, with no synchronization
messages being transmitted but based on pairs of prime numbers. This is differ-
ent from synchronous MAC protocols, as they need synchronization messages
to work.

Just as important as when to listen is for how long, or when to stop listening.
It could be for a fixed amount of time or until an event occurs. Stopping when
the node receives the first packet (or a specified number of packets, or from a
specified receiver, or of a specified type) could form the base of a content aware
network. For example, say that node A is interested in the temperature and
the mobility of the LR-WPAN. Then it would wait for a temperature sensor
message and an accelerometer sensor message.

I am convinced that there is no generic solution suitable for all applications,
but it is still an interesting question. By evaluating and trying out different
policies in different applications, perhaps a cartotheque of suggested listening
policies can be developed that can aid an application designer.
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Figure 7.1: Instead of listening with 100 % duty cycle (left) as it is in the
current implementation of politecast, duty cycling the listening and sending the
packet twice within a time shorter than the sleep period (right) will lower the
total utilization considerably. The duty cycles before could now be DCS = 1%
and DCR1 = 100% and in the enhanced version DCS = 2% and DCR1 = 50%.

Duty Cycled Listening A high amount of listening will reduce node lifetime,
but using similar techniques to LPL to duty cycle the listening, the cost can be
spread out and on a network level, lesser. If the listening is duty cycled at 50 %
and every politecast is sent twice with a delay, this will still ensure reception. As
politecast is deterministic (i.e. predictable radio duty cycle as seen in Figure 5.18
and 5.21) this would make it possible to divide the burden between sender and
receiver and pre-deployment know the resulting radio utilization for that service.
Figure 7.1 shows how the example with 50 % will work, going from a collective
utilization of 50.5 % to 26 %.

This would give the application designer the choice of which node will bear
the largest burden. E.g. node type A is more likely to use the sensors less and
can take a larger transmission burden than receiver node type B. An offline
burden divider optimizer could, based on a few inputs, find an optimum setting
for politecast and the listen policy.

Other MAC protocols Politecast has so far been implemented and eval-
uated in ContikiMAC and X-MAC, both asynchronous LPL protocols doing
broadcast in a similar way. Politecast should be evaluated with more different
protocols, such as an LPP protocol.

7.4 Discussion

Having used simulation tools for evaluation of politecast implementations, the
tool itself must be scrutinised and evaluated for goodness.

Goodness of the COOJA Network Simulator As measurements from the
COOJA simulator was used in the evaluations, the accuracy of the simulator
and radio model must be questioned. In Figure 5.24 (page 47) I examined the
effects of congestion with an experiment. I recreated the same evaluation in the
COOJA simulator, placing two nodes at the same distance as I did in reality,
and compared the measurements between the two cases as seen in Figure 7.2.

From this very small comparison, it is impossible to reach any generic con-
clusions about COOJA accuracy, but it hints that COOJA with the radio model
used is less accurate on the effects on radio congestion and interference. With no
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Figure 7.2: The accuracy of COOJA is hinted by the comparison of these two
graphs where the left is data from experiments and the right is from simulations.
COOJA seems to be slightly conservative as in the effects of congestion not being
as severe as in experiments.

congestion, COOJA is accurate; the corresponding radio duty cycles are off by
0.2 %, ± 0.0 % and 1.9 % but with congestion, the simulation underestimated
the effects by 5.7 %, 9.8 % and 11.2 %, all the better (more optimistic) than the
experiment. Also, the number of successfully received beacons per hour were
overestimated by 8.0 %. The inaccuracies can be related to the use of UDGM
— a recognized to be inaccurate model [38] of radio transmissions, but it hints
that the results for the broadcast implementation may not perform as well in
real life conditions as in the simulations in the evaluation.

Generalizability The politecast communication primitive was implemented
with the C programming language in the Contiki operating system, evaluated on
Sentilla JCreate, Tmote Sky and in a simulator. However, the principle behind
politecast is not bound to any OS or programming language.

7.5 Conclusion

With this thesis, I identified four problem areas with broadcast: congestion,
biased effort, overhearing and latency. I implemented and evaluated politecast,
a new communication primitive for one-to-many communication. In the evalu-
ation, I showed that politecast has a low, fixed and predictable communication
cost and is particularly well suited in applications where the power consumption
of the sender is of higher concern than the receivers, or where communication
characteristics are of a ”many transmit often, few are seldom interested”. It is
not a broadcast replacement as it is ill-suited when a transmission is unexpected,
but it is another tool in the application designers toolbox.
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Appendix A

API Reference

Open a politecast connection. Arguments: pointer to a politecast struct, chan-
nel number and pointer to a struct with politecast callback function pointers.

1 void politecast_open(struct politecast_conn *c,

2 uint16_t channel , const struct politecast_callbacks *u);

Listing A.1: Politecast open connection

Close a politecast connection. Arguments: pointer to the politecast struct.

1 void politecast_close(struct politecast_conn *c);

Listing A.2: Politecast close connection

Transmit the contents in packet buffer. Arguments: pointer to a politecast
struct. Returns the result from the Rime send function;

1 uint16_t politecast_send(struct politecast_conn *c);

Listing A.3: Politecast send

Start politecast listen. Arguments: pointer to a politecast struct and the
time to listen, measured in clock ticks. Invokes timeout callback when time is
out.

1 void politecast_listen(struct politecast_conn *c,

2 clock_time_t listen_time );

Listing A.4: Start politecast listen mode

Prematurely stop the listening. Does not invoke timeout callback. Argu-
ments: pointer to a politecast struct.

1 void politecast_listencancel(struct politecast_conn *c);

Listing A.5: Politecast stop listening

Check if we are currently listening. Arguments: pointer to a politecast
struct. Returns 0 if not, 1 if we are listening.
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1 uint16_t politecast_islistening(struct politecast_conn *c);

Listing A.6: Politecast is listening

Set the transmission power this connection shall use. Arguments: pointer to
a politecast struct, the transmission power. Returns 0 if requested transmission
power is out of possible range, 1 elsewise.

1 uint16_t politecast_set_txp(struct politecast_conn *c,

2 char txp);

Listing A.7: Politecast set txp

Get the transmission power this connection uses. Arguments: pointer to a
politecast struct. Returns the transmission power.

1 uint16_t politecast_get_txp(struct politecast_conn *c);

Listing A.8: Politecast get txp

Set the Receiving callback that is invoked when the connection receives a
politecast packet on the channel. Arguments: pointer to a politecast struct and
pointer to a Rime address struct, which will be set to the address of the sender.

1 void (* recv)( struct politecast_conn *c, rimeaddr_t *from);

Listing A.9: Politecast receive callback

Set the Timeout callback that is invoked when a politecast listen ends due
to timer expiring. Arguments: pointer to a politecast struct.

1 void (* timeout )( struct politecast_conn *c);

Listing A.10: Politecast timeout callback

Two structures define a politecast connection: the politecast connection
struct, and the callback struct with function pointers.

1 /* A politecast connection struct */

2 struct politecast_conn {

3 struct broadcast_conn c;

4 const struct politecast_callbacks *cb;

5 struct ctimer listen_timer;

6 char txp; /* Transmission power */

7 };

8 /* Callbacks for a politecast connection */

9 struct politecast_callbacks {

10 void (* recv)( struct politecast_conn *c, rimeaddr_t *from);

11 void (* timeout )( struct politecast_conn *c);

12 };

Listing A.11: Politecast structures
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Appendix B

Code Examples

B.1 Setting Up a Politecast Connection

1 static struct BEACON_PACKET bp;

2 static struct politecast_callbacks p_conn_cb = {NULL , NULL};

3 static struct etimer et;

4 bp.txp = BEACON_TXP;

5 politecast_open (&p_conn , 1337, &p_conn_cb );

6 politecast_set_txp (15);

7 while (1){

8 bp.val = some_function ();

9 packetbuf_copyfrom (&bp, sizeof(struct BEACON_PACKET ));

10 politecast_send ();

11 etimer_set (&et , CLOCK_SECOND );

12 PROCESS_WAIT_EVENT_UNTIL(etimer_expired (&et));

13 }

Listing B.1: Setting up a politecast connection.

B.2 Beacon Node

This example opens a politecast connection and periodically transmits a beacon
packet.

1 PROCESS (autostart_pr , "Autostart proc");

2 static void

3 rcv(struct politecast_conn *p, const rimeaddr_t *from){

4 /* Receive callback */

5 printf("Rcv from %u.%u\n", from ->u8[0], from ->u8[1]);

6 }

7 static struct BEACON_PACKET{

8 uint8_t txp;

9 uint16_t val;

10 }bp;

11 static struct politecast_callbacks p_conn_cb = {rcv , NULL};

12 static struct etimer et;
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13

14 PROCESS_THREAD (& autostart_pr , ev, data){

15 PROCESS_EXITHANDLER(politecast_close (& p_conn ););

16 PROCESS_BEGIN ();

17 politecast_open (&p_conn , 1337, &p_conn_callbacks );

18 politecast_set_txp (15);

19 bp.txp = 15;

20 while (1){

21 bp.val = get_number_of_neighbors ();

22 packetbuf_copyfrom (&bp, sizeof(struct BEACON_PACKET ));

23 politecast_send ();

24 etimer_set (&et , CLOCK_SECOND );

25 PROCESS_WAIT_EVENT_UNTIL(etimer_expired (&et));

26 }

27 PROCESS_END ();

28 }

Listing B.2: Politecast beacon node example.

B.3 Listen Mode Triggering

Here, the listening is triggered by movement, as detected by an accelerometer.

1 if(! politecast_islistening (& p_conn )) {

2 if (accmeter.x >= THRESH_HI || accmeter.x <= THRESH_LO ){

3 politecast_listen (&p_conn , CLOCK_SECOND * 10);

4 }

5 }

Listing B.3: Politecast listen triggered by accelerometer
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Appendix C

Developing Environment

Software for the nodes is written in the C programming language. It is compiled
in a terminal with the GCC compiler toolchain and either uploaded to the node
using a boot strap loader (BSL) or run in COOJA simulations. For simulations,
position data is generated with software written in Python. Python is also used
for measurement data parsing and compilation.

Instant Contiki, Ubuntu A virtual machine image of Ubuntu 8.04 with all
the necessary files for software development in Contiki can be downloaded on
the Contiki homepage [12]. It is called Instant Contiki. The Contiki version
used was version 2.3 with CVS updates until 2010 april 10.

Compiler — GCC GNU Compiler Collection is a set of free tools for com-
piling and linking. The target platforms include IA-32 (x86), Atmel AVR and
Texas Instruments MSP430. The support for C99 extends to some but not all
features. The set used for this thesis is called MSPGCC [7].

Contiki Simulator — COOJA For simulating nodes with Contiki oper-
ating system, the simulator COOJA is used. COOJA is written in Java and
can simulate MSP430-based (among others) nodes and gives full insight to vari-
ables, registers and source code execution. It is developed at SICS and uses the
MSPsim module for simulating the microcontroller.

MSP430 Simulator — MSPsim MSPsim is a Java-based Texas Instru-
ments microcontroller simulator developed at SICS [9].

Portable Python Portable Python v1.1 [10] is a distribution of a Python
2.5.4 interpreter. The distribution also contains the Numeric package, which is
used for handling array structures.
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Appendix D

Glossary

ACK Acknowledgment (packet).

BCN, Beacon general term for a small ”Hello”-like transmission. Often periodic.
Used in neighbor discovery and other applications.

CCA Clear Channel Assessment.

CSMA-CA Carrier Sense, Multiple Access – Collision Avoidance; before transmit-
ting, the radio transceiver checks the media for radio energy. If detected by
CCA, it waits a specified or random time (the backoff window) before trying
again.

dBm dBm is the power ratio in decibels (dB) normalized to zero dBm being equal
to one milliwatt (mW). Every increase or decrease with 3 dBm means doubling
or halving the power.

DC Duty Cycle. For example, the duty cycle for radio transmitting is Σ(time in transmitting mode)
total time

.

DSSS Direct-Sequence Spread Spectrum, each of the transmitted data bits are en-
coded into several transmission bits that are modulated on a 2.4 GHz carrier
wave. At the receiver the signal is demodulated and the bits are decoded to
data bits. The carrier wave makes antennas with cm-size possible (instead of
km-size) and the encoding makes the signal more robust to interference [48].

ETX Estimated number of Transmissions (to e.g. specific neighbor, data sink). A
metric often used in routing tables etc for finding the ”shortest” route.

HAL Hardware Abstraction Layer, used for separating low level device programming
from higher level application programming.

IEEE Institute of Electrical and Electronics Engineers.

IEEE 802.11 a standard for wireless networks.

IEEE 802.15.4 a standard for low-power and low-data rate wireless networks.
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ISM Industrial, Scientific and Medical.

LPL Low-Power Listening, a MAC scheme in which the nodes wakes up and listens
for a while for traffic before going back to sleep. Example: X-MAC.

LPP Low-Power Probing, a MAC scheme in which the node wakes up and probes
the others for data by sending a beacon, which nodes can respond to. Example:
RI-MAC.

LQI Link Quality Indicator, a metric describing the amount of bit errors encountered
during reception of a packet.

LR-WPAN Low Rate Wireless Personal Area Network.

Mote A wireless sensor device used in WSNs. Also called node.

Node Generic term for an electronic device attached to a network. In this thesis, it
is used in the meaning of a wireless sensor node in a wireless sensor network.
Also called mote.

NULLMAC a MAC scheme that does no power saving efforts. The radio is always
on.

PDU Packet Data Unit, used interchangeably for ”packet” or the data that is trans-
mitted (including overhead, such as headers).

RSSI Received Signal Strength Indicator, indicates the signal strength in dBm.

RTS, CTS Request To Send, Clear To Send.

RWMM Random Waypoint Mobility Model.

Strobe a small packet only consisting of the minimal 802.15.4 header. Used for
waking up sleeping nodes for receiving data. The strobe train is called preamble.

TDMA Time Division, Multiple Access. Time is divided into slots and assigned to
nodes.

UDGM Unit Disk Graph Model, a model for radio transmissions.

WSN Wireless Sensor Network.
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an emotional mobile messaging system in their everyday practice. Int. J. Hum.-
Comput. Stud., 65(4):388–403, April 2007.

[53] Robert Szewczyk, Alan Mainwaring, Joseph Polastre, John Anderson, and David
Culler. An analysis of a large scale habitat monitoring application. In SenSys ’04:
Proceedings of the 2nd international conference on Embedded networked sensor
systems, pages 214–226, New York, NY, USA, 2004. ACM.

[54] Thiemo Voigt, Adam Dunkels, Joakim Eriksson, and Niclas Finne. Experiences
from two sensor network deployments: self-monitoring and self-configuration keys
to success. In Proceedings of Wired/Wireless Internet Communications: 6th In-
ternational Conference, WWIC 2008: Proceedings, page 12, Tampere, Finland,
2008. Lecture notes in computer science; 5031. DOI: 10.1007/978-3-540-68807-5.

[55] Benjamin W. Wah. Wiley Encyclopedia Of Computer Science And Engineering.
John Wiley & Sons, 2007.

[56] M. Welsh and G. Mainland. Programming sensor networks using abstract regions.
In Proc. USENIX/ACM NSDI’04, San Francisco, CA,, March 2004.

[57] Geoff Werner-Allen, Konrad Lorincz, Jeff Johnson, Jonathan Lees, and Matt
Welsh. Fidelity and yield in a volcano monitoring sensor network. In OSDI ’06:
Proceedings of the 7th symposium on Operating systems design and implementa-
tion, pages 381–396, Berkeley, CA, USA, 2006. USENIX Association.

67



[58] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler. Hood: a neighborhood
abstraction for sensor networks. In Proc. ACM MobiSys’04, Boston, MA, USA,
June 2004.

[59] Brad Williams and Tracy Camp. Comparison of broadcasting techniques for mo-
bile ad hoc networks. In MobiHoc ’02: Proceedings of the 3rd ACM international
symposium on Mobile ad hoc networking & computing, pages 194–205, New York,
NY, USA, 2002. ACM.

[60] Joey Wilson and Neal Patwari. Through-wall tracking using variance-based radio
tomography networks. CoRR, abs/0909.5417, 2009.

[61] Wei Ye, John Heidemann, and Deborah Estrin. Medium access control with
coordinated adaptive sleeping for wireless sensor networks. IEEE/ACM Trans.
Netw., 12(3):493–506, 2004.

68


	Introduction
	Wireless Sensor Networks
	Problem Formulation
	Hypothesis
	Method
	Thesis Structure

	Background
	Wireless Sensor Networks
	Examples
	Examples of Hardware
	Characteristics
	Challenges

	The OSI Reference Model
	Power Saving MAC Protocols

	IEEE 802.15.4
	Related Specifications and Standards
	Zigbee
	Bluetooth
	IEEE 802.11, WiFi

	Network Primitives
	Contiki Operating System

	Politecast
	Four Problems with Broadcast
	Politecast
	Example


	Implementation
	Network Layer
	MAC layer

	Evaluation
	Method
	Metrics
	Overhearing Costs
	Increased Congestion
	Biased Effort
	High Latency
	Other

	Simulation Setup
	COOJA Simulation Setup
	Position data, RWMMSim

	Case Study: Steal the Light
	Steal the Light Principle
	Implementation
	Metrics
	Simulation Setup
	Results

	Case Study: Neighbor Discovery
	The Neighbor Discovery Primitive
	Metrics
	Simulation Setup
	Results

	Case Study: The Lega System
	Implementation
	Metrics
	Experimental Setup
	Results


	Related Work
	Systems
	Positioning and Localization
	Programming Abstractions
	Duty Cycling MAC Protocols
	Communication Primitives

	Conclusion
	Advantages with Politecast
	Limitations of Politecast
	Future Work
	Discussion
	Conclusion

	API Reference
	Code Examples
	Setting Up a Politecast Connection
	Beacon Node
	Listen Mode Triggering

	Developing Environment
	Glossary
	References

